
Spartan-6 FPGA
Memory Controller

User Guide

UG388 (v2.3) August 9, 2010

Spartan-6 FPGA Memory Controller www.xilinx.com UG388 (v2.3) August 9, 2010

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© Copyright 2009–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other
trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

05/28/09 1.0 Initial Xilinx release.

08/18/09 1.1 • Removed references to MCB per-bit deskew calibration.
• Chapter 1:

• Added XC6SLX75 and XC6SLX75T devices and CPG196, CSG484, and FG(G)900
packages to Table 1-2, page 13.

• Chapter 2:
• In Figure 2-2, page 18, changed Configuration 5 to 128-bit bidirectional.
• Added note regarding board design requirements under Table 2-9, page 30.

• Chapter 3:
• Updated first paragraph in Supported Memory Devices, page 35.
• Added note to Clocking, page 37.
• Added subsection Additional Board Design Requirements, page 42.

• Chapter 4:
• Moved Note 1 from Figure 4-1, page 46 to below the figure.
• Added Note 2 about calibration logic.

• Appendix A:
• Updated JEDEC specification links in Memory Standards, page 65.

http://www.xilinx.com

UG388 (v2.3) August 9, 2010 www.xilinx.com Spartan-6 FPGA Memory Controller

12/02/09 2.0 • Moved Chapter 3, “Getting Started,” and Chapter 6, “Debugging MCB Designs,” and
to UG416, Spartan-6 FPGA Memory Interface Solutions User Guide.

• Changed introduction in About This Guide, page 7.
• Chapter 1:

• Revised Note 1 in Table 1-1, page 12 to refer to the data sheet for specific values.
• Added Note 2 to Table 1-2, page 13.

• Chapter 2:
• In Table 2-3, changed the description and values of the

C_MC_CALIBRATION_MODE attribute on page 25.
• Appended two sentences to exception (a) on page 30.

• Chapter 3:
• Replaced text regarding the speed of the calibration clock, calib_clk, on page 39.

• Chapter 4:
• Rephrased Note 1 under Figure 4-1, page 46.
• In the third paragraph after the Notes on page 46, removed the sentence about

calibration logic.
• Added note after first paragraph of Calibration, page 47.
• Removed portion of sentence about calibration logic in first paragraph of Phase 2:

DQS Centering, page 48.
• Added paragraph above Figure 4-13, page 59.
• Added note on page 62 before Table 4-5.

01/05/10 2.0.1 Revised document hyperlinks.

03/04/10 2.1 Chapter 1: In the Features and Benefits section, added bullet for input termination
automatic calibration to section. In Table 1-1, added parameters in Data Rate Minimum
column and updated table note 2. In Table 1-2, revised table note 1.

Chapter 2: In Table 2-2, added “THREEQUARTERS” as a possible value for the Memory
Drive Strength attribute, and modified the description for Memory Burst Length
attribute, indicating that DDR3 is always set to 8. In the Clock, Reset, and Calibration
Signals section, added calibration to the heading name, introductory text, and caption of
Table 2-4. In Table 2-4, changed the signal name BUFPLL to BUFPLL_MCB, changed the
signal name sys_rst to async_rst, and added signals mcb_drp_clk and calib_done. In the
Memory Device Interface section, modified descriptive text related to RZG and ZIO pins.
Added clarifying text in Note (page 30) relating to unused pins from an active MCB
reverting to general-purpose I/O. In Table 2-9, modified descriptions for the rzq and zio
signals.

Chapter 3: In Table 3-1, removed memory devices MT41K128M8xx-25 and
MT41K256M4xx-25. In the Clocking section, added text related to MIG/EDK generation
of clocking infrastructure. Clarified text related to location of externally driven PLL.
Revised text related to calibration clock. In Figure 3-3, changed signal name from
calib_clk to mcb_drp_clk. Changed the end of the first sentence after Figure 3-3.
Changed the first sentence about the calibration related clock on page 39. Under
Figure 3-4, added clarifying text related to using bank1 MCB pins as BPI pins. In the
Additional Board Design Requirements section on page 43, clarified requirements for
pull-down resistors on the RESET, CKE, and ODT signals. Added Simultaneous
Switching Output Considerations section.

Chapter 4: In the Phase 1: Input Termination section, added clarifying text related to
input termination of the RZQ and ZIO pins. In the Addressing section, added clarifying
text related to offsetting the starting address location using the write data mask inputs.
Added the Read Latency and Suspend sections.

Appendix A: Updated JEDEC URLs.

Date Version Revision

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf

Spartan-6 FPGA Memory Controller www.xilinx.com UG388 (v2.3) August 9, 2010

06/14/10 2.2 XCN10024, MCB Performance and JTAG Revision Code for Spartan-6 LX16 and LX45 FPGAs,
addresses these changes:

Chapter 1: Added an important note about Standard and Extended performance modes.

Chapter 2: In Table 2-4, included the BUFPLL_MCB block name in the pll_lock
description and changed the clock frequency example in the sysclk_2x description.

Chapter 3: In Clocking, removed LOCKED and pll_lock from the PLL block and MIG
Wrapper blocks, respectively, and changed the clock frequency examples in the second
and fourth paragraphs under Figure 3-3 on page 38.

08/09/10 2.3 Chapter 1: In Table 1-1, changed the minimum data rate value for LPDDR and indicated
that -3N speed-grade devices do not support the MCB in table note 1. Added table note
to Table 1-3.

Chapter 2: In Table 2-4, added italicized sentence to the calib_done signal description. In
Table 2-5, Table 2-6, and Table 2-7, added sentence about reset being required to recover
to the pX_cmd_error, pX_wr_error, and pX_rd_error descriptions, respectively.

Chapter 3: Added BUFG in Figure 3-3. Added sentences about preferred PLL location to
the end of the first paragraph under Figure 3-3. Added sentences about driving MCBs
on both sides of the device to the end of the second paragraph under Figure 3-3. Added
Modifying the Clock Setup section. Added fourth bullet about VREF to Additional Board
Design Requirements.

Chapter 4: In the second to the last paragraph of Phase 1: Input Termination, replaced
sentence about VREF source still being provided for different I/O standards when a
calibrated input termination is desired with sentence about LPDDR memory not
requiring VREF. Added sentence about resulting input termination to the last paragraph
of Phase 1: Input Termination on page 47.

Appendix A: Removed obsolete link.

Date Version Revision

http://www.xilinx.com
http://www.xilinx.com/support/documentation/customer_notices/xcn10024.pdf

Spartan-6 FPGA Memory Controller www.xilinx.com 5
UG388 (v2.3) August 9, 2010

Revision History . 2

Preface: About This Guide
Guide Contents . 7
Additional Documentation . 7
Additional Support Resources . 8

Chapter 1: Memory Controller Block Overview
Scope . 9
Introduction . 9
Features and Benefits . 9
Block Diagram . 10
Performance . 12
Device Family Support . 13
Supported Memory Configurations. 14
Software and Tool Support . 14

Chapter 2: MCB Functional Description
Architecture Overview . 15
Port Configurations . 17

Selecting a Port Configuration . 18
Arbitration . 18
Programmability . 20
Interface Details . 25

User (Fabric Side) Interface . 25
Clock, Reset, and Calibration Signals . 25
Command Path . 26
Write Datapath . 27
Read Datapath . 28
Self-Refresh Signals. 29

Memory Device Interface . 30

Chapter 3: Designing with the MCB
Design Flow . 33

CORE Generator Tool . 34
Supported Memory Devices . 35
Simulation . 36
Resource Utilization. 37
Clocking . 37

Modifying the Clock Setup . 39

Table of Contents

http://www.xilinx.com

6 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Migration and Banking. 40
PCB Layout Considerations . 41

General Guidelines . 41
Data, Data Mask, and Data Strobe Guidelines . 42
Address, Control, and Clock Guidelines . 42
Additional Board Design Requirements . 42
Simultaneous Switching Output Considerations . 43

Chapter 4: MCB Operation
Startup Sequence . 45
Calibration. 47

Phase 1: Input Termination . 47
Phase 2: DQS Centering . 48
Phase 3: Continuous DQS Tuning . 48

Instructions . 50
Addressing . 51
Command Path Timing. 52
Write Path Timing . 53
Read Path Timing . 54
Memory Transactions . 55

Simple Write . 55
Simple Read . 56

Read Latency. 57
Self Refresh . 58
Suspend . 59

Suspend Mode without DRAM Data Retention . 59
Suspend Mode with DRAM Data Retention . 59
Additional Suspend Mode Requirements . 61

Byte Address to Memory Address Conversion . 61
Transaction Ordering and Coherency . 64

Appendix A: References
Memory Standards . 65
PCB Layout and Signal Integrity . 65

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 7
UG388 (v2.3) August 9, 2010

Preface

About This Guide

This document describes the Spartan®-6 FPGA memory controller block (MCB). Complete
and up-to-date documentation of the Spartan-6 family of FPGAs is available on the Xilinx
website at http://www.xilinx.com/products/spartan6/index.htm.

To implement an MCB based memory interface, one of the two supported design tool
flows must be followed:

1. Memory Interface Generator (MIG)

For traditional (non-embedded) FPGA designs, refer to UG416, Spartan-6 FPGA
Memory Interface Solutions User Guide for information on implementing an MCB based
memory interface using the MIG tool within the CORE Generator™ software. This
document also contains information on debugging MCB interfaces.

2. Embedded Development Kit (EDK)

For embedded designs, refer to DS643, Multi-Port Memory Controller (MPMC) for
details on how the MCB is used to implement the MPMC within the EDK
environment.

Guide Contents
This manual contains the following chapters:

• Chapter 1, Memory Controller Block Overview, introduces the Spartan-6 FPGA MCB.

• Chapter 2, MCB Functional Description, describes the architecture, signal interface,
and possible configurations of the MCB.

• Chapter 3, Designing with the MCB, provides details on how to incorporate the MCB
into a Spartan-6 design, with specifics on how to customize the block for a given
application.

• Chapter 4, MCB Operation, explains how the MCB functions in various operational
modes: startup, calibration, refresh, precharge, standard read/write transactions, etc.

• Appendix A, References, contains links to additional documentation relevant to
memory interface design.

Additional Documentation
The following documents are also available for download at
http://www.xilinx.com/products/spartan6/index.htm.

• Spartan-6 Family Overview

This overview outlines the features and product selection of the Spartan-6 family.

http://www.xilinx.com
http://www.xilinx.com/products/spartan6/index.htm
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mpmc.pdf
http://www.xilinx.com/products/spartan6/index.htm

8 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Preface: About This Guide

• Spartan-6 FPGA Data Sheet: DC and Switching Characteristics

This data sheet contains the DC and Switching Characteristic specifications for the
Spartan-6 family.

• Spartan-6 FPGA Packaging and Pinouts Product Specification

This specification includes the tables for device/package combinations and maximum
I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and
thermal specifications.

• Spartan-6 FPGA Configuration User Guide

This all-encompassing configuration guide includes chapters on configuration
interfaces (serial and parallel), multi-bitstream management, bitstream encryption,
boundary-scan and JTAG configuration, and reconfiguration techniques.

• Spartan-6 FPGA SelectIO Resources User Guide

This guide describes the SelectIO™ resources available in all Spartan-6 devices.

• Spartan-6 FPGA Clocking Resources User Guide

This guide describes the clocking resources available in all Spartan-6 devices,
including the DCMs and the PLLs.

• Spartan-6 FPGA Block RAM Resources User Guide

This guide describes the Spartan-6 device block RAM capabilities.

• Spartan-6 FPGA Configurable Logic Block User Guide

This guide describes the capabilities of the configurable logic blocks (CLBs) available
in all Spartan-6 devices.

• Spartan-6 FPGA GTP Transceivers User Guide

This guide describes the GTP transceivers available in Spartan-6 LXT FPGAs.

• Spartan-6 FPGA DSP48A1 Slice User Guide

This guide describes the architecture of the DSP48A1 slice in Spartan-6 FPGAs and
provides configuration examples.

• Spartan-6 FPGA PCB and Pin Planning Design Guide

This guide provides information on PCB design for Spartan-6 devices, with a focus on
strategies for making design decisions at the PCB and interface level.

• Spartan-6 FPGA Power Management User Guide

This guide provides information on the various hardware methods of power
management in Spartan-6 devices, primarily focusing on the suspend mode.

Additional Support Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support

Spartan-6 FPGA Memory Controller www.xilinx.com 9
UG388 (v2.3) August 9, 2010

Chapter 1

Memory Controller Block Overview

Scope
This chapter provides an overview of the Spartan®-6 FPGA memory controller block
(MCB). It contains these sections:

• Introduction

• Features and Benefits

• Block Diagram

• Performance

• Device Family Support

• Supported Memory Configurations

• Software and Tool Support

Introduction
The MCB is a dedicated embedded block multi-port memory controller that greatly
simplifies the task of interfacing Spartan-6 devices to the most popular memory standards.
The MCB provides significantly higher performance, reduced power consumption, and
faster development times than equivalent IP implementations. The embedded block
implementation of the MCB conserves valuable FPGA resources and allows the user to
focus on the more unique features of the FPGA design.

Features and Benefits
The key features and benefits of the Spartan-6 FPGA memory controller block are:

• DDR, DDR2, DDR3, and LPDDR (Mobile DDR) memory standards support

• Up to 800 Mb/s (400 MHz double data rate) performance

• Up to four MCB cores in a single Spartan-6 device. Each MCB core supports:

• 4-bit, 8-bit, or 16-bit single component memory interface

• Memory densities up to 4 Gb

• Up to 12.8 Gb/s aggregate bandwidth

• Configurable dedicated multi-port user interface to FPGA logic

• 1 to 6 ports per MCB depending on configuration

• 32-, 64-, or 128-bit data bus options

• Bidirectional (R/W) or unidirectional (W only or R only) port options

http://www.xilinx.com

10 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 1: Memory Controller Block Overview

• Memory Bank Management

• Up to eight memory banks open simultaneously for greater controller efficiency

• Embedded controller and physical interface (PHY), providing:

• Predictable timing

• Low power

• Guaranteed performance

• Predefined pinouts (I/O locations) for each MCB

• Simplified board design

• Predefined I/Os not used in an MCB interface become general-purpose I/Os (see
page 30 for details).

• Common memory device options and attributes support

• Programmable drive strength

• On-Die Termination (ODT)

• CAS latency

• Self refresh (including partial array)

• Refresh interval

• Write recovery time

• Automatic delay calibration of memory strobe and read data inputs

• Adjusts DQS (strobe) to DQ (data) timing relationship for optimal read
performance

• Optional automatic calibration of FPGA on-chip input termination for optimal signal
integrity

• Supported by Xilinx® CORE Generator™ and Embedded Development Kit (EDK)
design tools

• Memory Interface Generator (MIG) tool within the CORE Generator software
simplifies the MCB design flow

• Embedded designs can also access the MCB via the multi-port memory controller
(MPMC) IP in the EDK tool

Block Diagram
The block diagram in Figure 1-1 shows the major architectural components of the MCB
core. Throughout this document, the MCB is described as provided to the user by the
memory IP tools within the CORE Generator software or EDK environment. These tools
typically produce top-level “wrapper” files that incorporate the embedded block memory
controller primitive and any necessary soft logic and port mapping required to deliver the
complete solution. For example, in Figure 1-1, the physical interface of the MCB uses the
capabilities of the general I/O block (IOB) to implement the external interface to the
memory. General I/O clock network resources are also used.

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 11
UG388 (v2.3) August 9, 2010

Block Diagram

The single data rate (SDR) user interface to the MCB inside the FPGA can be configured for
one to six ports, with each port consisting of a command interface and a read and/or write
data interface. The two 32-bit bidirectional and four 32-bit unidirectional hardware-based
ports inside the MCB can be grouped to create five different port configurations.

Other major components of the MCB include:

• Arbiter

Determines which port currently has priority for accessing the memory device.

• Controller

Primary control block that converts the simple requests made at the user interface into
the necessary instructions and sequences required to communicate with the memory.

• Datapath

Handles the flow of write and read data between the memory device and the user
logic.

• Physical Interface (PHY)

Converts the controller instructions into the actual timing relationships and DDR
signaling necessary to communicate with the memory device.

• Calibration Logic

Calibrates the PHY for optimal performance and reliability.

X-Ref Target - Figure 1-1

Figure 1-1: Spartan-6 FPGA Memory Controller Block (IP Wrapper View)

UG388_c1_01_050409

32-Bit
Bidirectional

Arbiter

PHY

IO
B

Datapath

IP Wrapper

Spartan-6 FPGA

Memory

Controller

Calibration
Logic

DDR
DDR2
DDR3
LPDDR

32-Bit
Bidirectional

32-Bit
Unidirectional

32-Bit
Unidirectional

32-Bit
Unidirectional

32-Bit
Unidirectional

CMD FIFO 0
CMD FIFO 1

CMD FIFO 2

CMD FIFO 3
CMD FIFO 4

CMD FIFO 5

U
se

r
Lo

gi
c

D
ed

ic
at

ed
 R

ou
tin

g

I/O
 C

lo
ck

in
g

N
et

w
or

k

http://www.xilinx.com

12 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 1: Memory Controller Block Overview

Performance
The dedicated MCB cores in Spartan-6 devices enable significantly higher performance
levels than equivalent IP solutions implemented in the FPGA logic. Because memory
bandwidth is often the bottleneck in overall system performance, the MCB cores were
specifically engineered for users looking to maximize memory performance in a low-cost,
low-power FPGA device.

Each MCB core supports the memory interface data rates and total memory bandwidth
specifications shown in Table 1-1. Peak bandwidth for a single MCB memory interface is
calculated for the three supported interface widths.

Note: The MCB supports Standard and Extended performance modes depending on the selected
VCCINT operating conditions. Peak data rates shown in Table 1-1 represent maximum performance
when using the VCCINT range in Extended performance mode. Refer to Table 2 (Recommended
Operating Conditions) and the Performance Characteristics section in DS162, Spartan-6 FPGA Data
Sheet: DC and Switching Characteristics for VCCINT operating conditions and performance
specifications for Standard and Extended modes.

Table 1-1: Memory Interface Data Rates and Peak Bandwidth for Each MCB

Memory Type

Data Rate:
Mb/s DDR (MHz Clock)

Peak Bandwidth per MCB Interface (Gb/s)

Minimum Maximum(1) 4-Bit 8-Bit 16-Bit

DDR 167 Mb/s(2)

(83.3 MHz)
400 Mb/s
(200 MHz)

1.6 Gb/s 3.2 Gb/s 6.4 Gb/s

DDR2 250 Mb/s(2)

(125 MHz)
800 Mb/s
(400 MHz)

3.2 Gb/s 6.4 Gb/s 12.8 Gb/s

DDR3 606 Mb/s(2)

(303 MHz)
800 Mb/s
(400 MHz)

3.2 Gb/s 6.4 Gb/s 12.8 Gb/s

LPDDR 60 Mb/s(2)

(30 MHz)
400 Mb/s
(200 MHz)

1.6 Gb/s 3.2 Gb/s 6.4 Gb/s

Notes:
1. The maximum MCB data rate shown does not apply to all speed grades. Refer to DS162, Spartan-6

FPGA Data Sheet: DC and Switching Characteristics, for performance by speed grade. The
-3N speed-grade devices do not support the MCB.

2. The minimum frequency requirement of the MCB is dictated by the minimum frequency specification
for the memory standard. See Memory Standards in Appendix A for links to the relevant JEDEC
specifications.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf

Spartan-6 FPGA Memory Controller www.xilinx.com 13
UG388 (v2.3) August 9, 2010

Device Family Support

Device Family Support
The number of MCBs available in a given Spartan-6 device is determined by the density
range that the device falls within. The smallest device (XC6SLX4) contains no MCBs, mid-
range density devices contain two MCBs, and the largest devices contain four MCBs.
Table 1-2 shows the number of MCBs supported in each device/package combination.

Note: The MCB is designed to interface to a single x4, x8, or x16 memory component. Multiple
component interfaces to a single MCB (for example, two x8 memories interfacing to an MCB in
x16 mode) are not supported.
.

Table 1-2: MCB Support by Device / Package Combination

Device
Package

TQG144 CPG196 CSG225 FT(G)256 CSG324 FG(G)484 CSG484 FG(G)676 FG(G)900

XC6SLX4 0 0 0

XC6SLX9 0 0 2(1) 2 2

XC6SLX16 0 2(1) 2 2

XC6SLX25 2 2 2

XC6SLX45 2 2 2 2

XC6SLX75 2(2) 2(2) 4

XC6SLX100 2(2) 2(2) 4

XC6SLX150 2(2) 2(2) 4 4

XC6SLX25T 2 2

XC6SLX45T 2 2 2

XC6SLX75T 2(2) 2(2) 4

XC6SLX100T 2(2) 2(2) 4 4

XC6SLX150T 2(2) 2(2) 4 4

Notes:
1. For devices in the CSG225 package, the MCBs support only the x4 and x8 memory interface width options, meaning LPDDR devices

cannot be supported. In addition, there are only 13 MCB address bits available in this package, which limits the maximum memory
density to 256 Mb for DDR2 and 512 Mb for DDR and DDR3.

2. For devices with four MCBs, only two MCBs are bonded out in the FGG484 and CSG484 packages.

http://www.xilinx.com

14 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 1: Memory Controller Block Overview

Supported Memory Configurations
The Spartan-6 FPGA MCB supports a wide range of common memory types,
configurations, and densities, as shown in Table 1-3.

Software and Tool Support
The Spartan-6 FPGA MCB is supported by standard software and tool flows like other soft
and embedded IP blocks offered by Xilinx. For conventional (i.e., non-embedded) FPGA
designs, the MCB can be integrated into a design using the Memory Interface Generator
(MIG) tool, available in the CORE Generator tool.

The MIG tool is used to generate memory interfaces for all Xilinx FPGAs. It produces the
necessary RTL design files, user constraints files (UCFs), and script files for simulation and
implementation of memory solutions offered by Xilinx. The Getting Started chapter in
UG416, Spartan-6 FPGA Memory Interface Solutions User Guide, contains detailed
step-by-step instructions on how to use the MIG tool to implement memory interfaces
based on the MCB.

For embedded designs (e.g., MicroBlaze™ processor designs), the IP configurator GUI
found in the Xilinx Platform Studio tool within the EDK environment can be used to
specify the memory interface characteristics. In this flow, the MCB serves as the underlying
hardware implementation of the MPMC IP block, available in the EDK library. In addition
to setting up the controller and memory attributes, the tool generates the necessary soft
bridges to the PLB bus, Xilinx Cache Link (XCL), LocalLink (LL), or other specified
interface for connecting EDK peripherals to the resulting memory controller ports.

Table 1-3: Supported Memory Configurations

Memory Density
Width

(# DQ bits)
Memory Type

LPDDR DDR DDR2 DDR3

128 Mb x16 X X

x8 X

x4 X

256 Mb x16 X X X

x8 X X

x4 X X

512 Mb x16 X X X X

x8 X X X

x4 X X X

1 Gb x16 X X X X

x8 X X X

x4 X X X

2 Gb x16 X X

x8 X X

x4 X X

4 Gb(1) x16 X

Notes:
1. The MCB supports single-die, 4 Gb memory components (when available from memory suppliers) but

not dual-die, 4 Gb memory components.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf

Spartan-6 FPGA Memory Controller www.xilinx.com 15
UG388 (v2.3) August 9, 2010

Chapter 2

MCB Functional Description

This chapter provides a detailed functional description of the Spartan®-6 FPGA MCB. It
contains the following sections:

• Architecture Overview

• Port Configurations

• Arbitration

• Programmability

• Interface Details

Architecture Overview
The MCB provides a simple, reliable means of interfacing to a single component memory
device. The MCB User Interface removes the complexities of DDR memory interfacing so
that more engineering resources can be directed to the unique aspects of the FPGA design.

The MCB can operate at speeds considerably faster than a comparable “soft” solution
implemented in the FPGA logic. With data rates up to 800 Mb/s, the MCB more than
doubles the performance of prior generation low-cost FPGA memory interface solutions,
allowing higher levels of bandwidth and/or narrower memory buses. This provides the
significant benefit of conserving valuable FPGA logic and I/O resources that are otherwise
required to communicate with the memory device.

Figure 2-1 expands on the MCB block diagram introduced in Chapter 1 to show the major
signals associated with the User Interface internal to the FPGA as well as the I/O signals
connected to the external memory device. While the User Interface can be configured to
support up to six ports, for simplicity, Figure 2-1 shows only the signals for a single
bidirectional port.

http://www.xilinx.com

16 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 2: MCB Functional Description

There are three basic types of ports that can be established at the User Interface:

• Read port (unidirectional)

• Write port (unidirectional)

• Read and Write port (bidirectional)

Each port contains a command path and a datapath. For a unidirectional port, a command
path is paired with a single read-only or a single write-only datapath. However, for a
bidirectional port, a single command path is shared by both the read and write datapaths
associated with that port. FIFOs are used at the User Interface of the command path and
datapath to queue up memory requests and to manage the transfer from the user clock
domain to the memory controller clock domain.

The command path signals for a port are used to issue requests to the command FIFOs. The
command FIFOs have a user-programmable depth up to four. They store the instruction
type (read, write, refresh, etc.), address, and burst length associated with a requested
memory transaction. The command path also includes full and empty status flag outputs
from the command FIFOs, indicating whether new requests can be accepted. There are six
command FIFOs available in hardware; the port configuration determines how many are
accessible to the User Interface (see Port Configurations). For more details on the
command path signals, refer to Interface Details, page 25.

X-Ref Target - Figure 2-1

Figure 2-1: MCB Architecture with Major Internal and I/O Signals

UG388_c3_01_050409

Arbiter

Spartan-6 FPGA Memory Controller Block

IP Wrapper

32-Bit Bidirectional

CMD FIFO 0
CMD FIFO 1
CMD FIFO 2
CMD FIFO 3
CMD FIFO 4
CMD FIFO 5

p0_cmd_clk
p0_cmd_en
p0_cmd_bl

p0_cmd_instr
p0_cmd_addr

p0_cmd_full

mcbx_dram_clk
mcbx_dram_clk_n
mcbx_dram_cke
mcbx_dram_ras_n
mcbx_dram_cas_n
mcbx_dram_we_n
mcbx_dram_odt
mcbx_dram_ddr3_rst
mcbx_dram_ba
mcbx_dram_addr
mcbx_dram_dq
mcbx_dram_dqs
mcbx_dram_dqs_n
mcbx_dram_udm
mcbx_dram_ldm

p0_cmd_empty

p0_rd_clk
p0_rd_en

p0_rd_data
p0_rd_empty

p0_rd_full
p0_rd_overflow

p0_rd_count
p0_rd_error

p0_wr_clk
p0_wr_en

p0_wr_data
p0_wr_mask

p0_wr_empty
p0_wr_full

p0_wr_underrun
p0_wr_count
p0_wr_error

32-Bit Bidirectional

32-Bit Unidirectional

32-Bit Unidirectional

32-Bit Unidirectional

32-Bit Unidirectional

Spartan-6 FPGA Memory

Controller

Datapath

D
edicated R

outing

I/O
 C

lock N
etw

ork

P
H
Y

I
O
B

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 17
UG388 (v2.3) August 9, 2010

Port Configurations

In the datapath, the underlying hardware contains six 32-bit ports, two of which are
inherently bidirectional. The other four ports are inherently unidirectional but can be
combined to create bidirectional ports as well. There are five possible port configurations
that combine these six hardware ports to implement the desired User Interface (see Port
Configurations). The width of the read and write data word fields of the User Interface are
naturally determined by the chosen configuration.

The datapath FIFOs are 64 deep, allowing for burst lengths of up to 64 data words from a
given start address. In addition to the data word field, the write path FIFOs contain mask
bit fields that allow optional masking of write data on a per byte basis. Full, empty,
underrun, count, and error outputs indicate the current status of the write data FIFOs. The
read data FIFOs have a similar set of status outputs. For more details on the read and write
datapath signals, refer to Interface Details, page 25.

The arbiter inside the MCB uses a time slot based arbitration mechanism to determine
which of the one to six ports of the User Interface currently has access to the memory. There
are also methods for allowing some ports greater priority, and thus frequent access to the
memory, as discussed in Arbitration.

Bank management logic in the MCB allows up to eight memory banks to be open
simultaneously, allowing the controller to maintain high efficiency levels when accessing
data spread across multiple banks. In addition, read and write requests to the memory can
include an optional auto-precharge to automatically close a bank upon completion of the
transaction to improve the efficiency of random data accesses within a bank. The MCB
does not perform any reordering of transactions.

Port Configurations
The five possible port configurations for the User Interface are shown in Figure 2-2. In
Configuration 1, the user ports essentially map directly to the underlying six physical
hardware ports. For the other configurations, the diagram shows how the physical ports
are concatenated to create different user port combinations. As shown in Figure 2-2, the
MIG tool always sequentially numbers ports for the User Interface starting from 0,
regardless of the underlying physical port numbers.

In all five port configurations, the command path, write datapath, and read datapath
within a given port all have separate clocks and therefore can be connected to independent
clock domains. However, it is recommended that all paths related to a given port be kept
on a single clock domain to simplify the interface requirements.

http://www.xilinx.com

18 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 2: MCB Functional Description

Selecting a Port Configuration
The MIG tool in the CORE Generator™ tool provides a simple graphical interface for
setting up the number and type of ports required for a specific application. For designs that
require less than the full width or functionality of the User Interface, unused ports can
simply be disabled through the MIG interface. In the event that additional ports are
required beyond the six ports provided in the MCB, port bridges with additional
arbitration mechanisms can be implemented in the FPGA logic to expand the MCB port
capabilities.

Arbitration
The arbiter inside the MCB uses a time slot based arbitration mechanism to determine
which port of the User Interface currently has access to the memory. There are 12 time slots
in the arbitration table as shown in Table 2-1. Each time slot corresponds to a single
memory clock cycle. The order of port priority in a given time slot is determined by the
port numbers entered into the Priority 1 through 6 columns moving from left to right
across the table.

Table 2-1 shows the case where the User Interface is configured for the maximum six ports.
If the MCB is configured to have fewer than six ports, the arbitration table automatically
adjusts to have priority columns only for the selected number of ports.

X-Ref Target - Figure 2-2

Figure 2-2: Possible Port Configurations for the User Interface

UG388_c3_02_072809

User Port 0
128-Bit R/W

User Port 1
64-Bit R/W

User Port 1
32-Bit R/W

User Port 2
32-Bit R/W

User Port 2
32-Bit R/W

User Port 2
32-Bit R or W

User Port 3
32-Bit R or W

User Port 0

Configuration 1

64-Bit R/W

User Port 0
32-Bit R/W

2 32-Bit Bidirectional
4 32-Bit Unidirectional

Configuration 3
1 64-Bit Bidirectional
2 32-Bit Bidirectional

Configuration 2
4 32-Bit Bidirectional

Configuration 4
2 64-Bit Bidirectional

Configuration 5
1 128-Bit Bidirectional

User Port 1
32-Bit R/W

User Port 0
32-Bit R/W

User Port 1
32-Bit R/W

User Port 4
32-Bit R or W

User Port 5
32-Bit R or W

User Port 3
32-Bit R/W

User Port 0
64-Bit R/W

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 19
UG388 (v2.3) August 9, 2010

Arbitration

During a given clock cycle, the arbiter determines which port to service in that time slot. It
moves left to right across the priority columns to find the first port in that row that has a
command pending in its command FIFO. That port is then serviced with execution of the
pending command, and the arbiter moves on to the next time slot on the following clock
cycle. If no port has a command pending for that row, no action occurs for that time slot
and a clock cycle is lost.

The order of port priorities in the arbitration table is fully programmable. The MIG tool
provides a default round-robin scheme as illustrated in Table 2-1, where all ports are given
the highest priority in 2 of the 12 available time slots. However, the MIG tool also provides
a custom option where the user can define any arbitration table. This allows for some ports
to be given greater overall access to the memory device. However, care should be exercised
when using this option to ensure that the assigned priorities do not prevent any active
ports from receiving access to the memory device.

It is possible to configure the User Interface to have five ports (two 32-bit bidirectional
ports and three 32-bit unidirectional ports, with one 32-bit unidirectional port disabled). In
this case, the arbitration table is reduced to 10 time slots. When the number of time slots is
evenly divisible by the number of ports, each port is ensured to receive equal access to the
memory device, if desired.

Table 2-1: MCB Arbitration Table with Round Robin Configuration

Time Slot Priority 1 Priority 2 Priority 3 Priority 4 Priority 5 Priority 6

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

6 0 1 2 3 4 5

7 1 2 3 4 5 0

8 2 3 4 5 0 1

9 3 4 5 0 1 2

10 4 5 0 1 2 3

11 5 0 1 2 3 4

http://www.xilinx.com

20 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 2: MCB Functional Description

Programmability
The MCB is highly configurable through a set of memory device and controller attributes,
allowing it to support multiple memory standards and configurations. The MIG tool
within the CORE Generator tool and the IP Configurator in the Xilinx Platform Studio tool
within the EDK environment provide a simple means of configuring the MCB attributes to
implement the desired memory interface (for example, see the “Getting Started” chapter in
UG416, Spartan-6 FPGA Memory Interface Solutions User Guide).

Table 2-2 and Table 2-3 list the memory device and controller attributes, respectively,
supported by the MCB. The specific HDL parameter names, possible values, and
descriptions associated with each of the attributes are provided. In general, the MIG tool or
IP Configurator tools are responsible for setting all parameter values, so the values should
not be modified directly.

Memory timing parameters are taken from the vendor data sheets, and are automatically
assigned by the tools when a supported device is selected. Timing parameters can be
specified when creating a custom device (see the “Setting Controller Options” section in
the Spartan-6 FPGA Memory Interface Solutions User Guide).

Table 2-2: Memory Device Attributes

Memory Attributes Parameter Name(s) Description / Possible Values

Memory Type C_MEM_TYPE This attribute sets the memory standard
implemented by the MCB.

Possible values: DDR, DDR2, DDR3, LPDDR.

Memory Data Bus Width C_NUM_DQ_PINS This attribute sets the bit width of the DQ bus.

Possible values: “4“, “8“, “16“.

Memory Address Bus Width C_MEM_ADDR_WIDTH This attribute sets the memory address bus
width (the total number of address bits).

Possible values: Based on device selection in
the MIG tool.

Memory Bank Address Bus
Width

C_MEM_BANKADDR_WIDTH This attribute sets the number of bank address
bits.

Possible values: Based on device selection in
the MIG tool.

Memory Column Address
Bus Width

C_MEM_NUM_COL_BITS This attribute sets the number of column
address bits.

Possible values: Based on device selection in
the MIG tool.

Memory Burst Length C_MEM_BURST_LEN This attribute sets the memory burst length to
be used. The MIG tool determines the value
based on the memory standard, port
configuration, and interface width. DDR3 will
always be set to 8.

Possible values: “4“, “8“.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf

Spartan-6 FPGA Memory Controller www.xilinx.com 21
UG388 (v2.3) August 9, 2010

Programmability

Memory CAS Latency DDR, DDR2, LPDDR:
C_MEM_CAS_LATENCY

DDR3:
C_MEM_DDR3_CAS_LATENCY,

C_MEM_DDR3_CAS_WR_LATENCY

This attribute sets the CAS latency (the delay
in clock cycles between the READ command
and the first output data) for memory. DDR3
has separate Read and Write CAS latency
values.

Possible values: 2, 3, 4, 5, 6, 7, 8, 9, 10,
depending on memory type.

Partial Array Self-Refresh
Size

C_MEM_MOBILE_PA_SR For LPDDR: This attribute sets the array size
for self-refresh operation.

Possible values: LPDDR: Full, Half

Memory Drive Strength DDR, DDR2: C_MEM_DDR1_2_ODS

DDR3: C_MEM_DDR3_ODS

LPDDR: C_MEM_MDDR_ODS

This attribute sets output drive strength of
memory device.

Possible values:

DDR/DDR2: “FULL“, “REDUCED“

DDR3: “DIV6“ (RZQ/6), “DIV7“ (RZQ/7)

LPDDR: “FULL“, “THREEQUARTERS”,
“HALF“, “QUARTER“

Memory Termination Value
(ODT)

DDR2: C_MEM_DDR2_RTT

DDR3: C_MEM_DDR3_RTT

This attribute sets on-die termination
resistance of the memory device.

Possible values:

DDR2: “OFF“, “50OHMS“, “75OHMS“,
“150OHMS“

DDR3: “OFF“, “DIV2“ (RZQ/2), “DIV4“
(RZQ/4), “DIV6“ (RZQ/6), “DIV8“
(RZQ/8), “DIV12“ (RZQ/12)

Note: RZQ = 240Ω

Memory Differential DQS
Enable

C_MEM_DDR2_DIFF_DQS_EN Enables differential DQS strobe use. This
attribute is always enabled for DDR3; it is set
to “YES“ for DDR2 at frequencies above
200 MHz.

Possible values:

DDR2: “YES“, “NO“

Memory Auto Self Refresh C_MEM_DDR3_AUTO_SR For DDR3 only: Auto self-refresh allows
memory to determine the best refresh interval
based on device temperature. If auto self-
refresh is not used, the operating temperature
range must be indicated using the high-
temperature self-refresh register.

Possible values: “ENABLED“, “MANUAL“

Memory High Temperature
Self Refresh

C_MEM_DDR2_3_HIGH_TEMP_SR For DDR2 and DDR3: Memory can be put in
high-temperature self-refresh mode to
decrease refresh interval time.

Possible values:

DDR2/DDR3: “NORMAL“ (0–85°C),
“EXTENDED“ (> 85°C)

Table 2-2: Memory Device Attributes (Cont’d)

Memory Attributes Parameter Name(s) Description / Possible Values

http://www.xilinx.com

22 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 2: MCB Functional Description

Memory Dynamic Output
Driver Termination

C_MEM_DDR3_DYN_WRT_ODT For DDR3: Determines the value of the
dynamic output driver termination.

Possible values:

DDR3: “OFF“, “DIV2“ (RZQ/2), “DIV4“
(RZQ/4)

Memory tRAS Value C_MEM_TRAS Minimum Active to Precharge period for
memory.

Possible values (in picoseconds): Based on
device selection in the MIG tool.

Memory tRCD Value C_MEM_TRCD Minimum Active to the Read or Write
command delay for memory.

Possible values (in picoseconds): Based on
device selection in the MIG tool.

Memory tREFI Value C_MEM_TREFI Average Periodic Refresh Interval for memory.
This attribute is the rate at which the MCB
refreshes the memory, not the self-refresh
interval.

Possible values (in picoseconds): Based on
device selection in the MIG tool.

Memory tRFC Value C_MEM_TRFC Minimum Auto-Refresh to Active or Auto-
Refresh command period for memory.

Possible values (in picoseconds): Based on
device selection in the MIG tool.

Memory tRP Value C_MEM_TRP Minimum Precharge command period for
memory.

Possible values (in picoseconds): Based on
device selection in the MIG tool.

Memory tWR Value C_MEM_TWR Minimum Write Recovery time for memory.

Possible values (in picoseconds): Based on
device selection in the MIG tool.

Memory tRTP Value C_MEM_TRTP Minimum Read to Precharge command delay
for memory. Typically, this parameter is only
found in DDR2 and DDR3 devices.

Possible values (in picoseconds): Based on
device selection in the MIG tool.

Memory tWTR Value C_MEM_TWTR Minimum Write to Read command delay for
memory.

Possible values (in picoseconds): Based on
device selection in the MIG tool.

Table 2-2: Memory Device Attributes (Cont’d)

Memory Attributes Parameter Name(s) Description / Possible Values

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 23
UG388 (v2.3) August 9, 2010

Programmability

Table 2-3: Controller Attributes

Controller Attributes Parameter Name(s) Description / Possible Values

Controller Clock Period C_MEMCLK_PERIOD This attribute converts memory timing
parameters between clock cycles and
picoseconds.

Possible values (in picoseconds): Based on
frequency selection in the MIG tool.

Controller Port Configuration C_PORT_CONFIG This attribute sets the port configuration of the
User Interface. It determines the port direction
(B = Bidirectional, W = Unidirectional Write,
R = Unidirectional Read) and data bus width (32,
64, or 128 bits).

Possible Values:

“B32_B32_W32_W32_W32_W32“

“B32_B32_W32_W32_W32_R32“

“B32_B32_W32_W32_R32_W32“

“B32_B32_W32_W32_R32_R32“

“B32_B32_W32_R32_W32_W32“

“B32_B32_W32_R32_W32_R32“

“B32_B32_W32_R32_R32_W32“

“B32_B32_W32_R32_R32_R32“

“B32_B32_R32_W32_W32_W32“

“B32_B32_R32_W32_W32_R32“

“B32_B32_R32_W32_R32_W32“

“B32_B32_R32_W32_R32_R32“

“B32_B32_R32_R32_W32_W32“

“B32_B32_R32_R32_W32_R32“

“B32_B32_R32_R32_R32_W32“

“B32_B32_R32_R32_R32_R32“

“B32_B32_B32_B32“

“B64_B32_B32“

“B64_B64“

“B128“

Port Data Bus Width (Ports 0
and 1)

C_P0_DATA_PORT_SIZE

C_P1_DATA_PORT_SIZE

Ports 0 and 1 of the User Interface can vary in
data bus width depending on the port
configuration selected (Ports 3 through 5, if
available, are always 32 bits wide). These
parameters set the Port 0 and 1 data width.

Possible Values: “32“, “64“, “128“

Port Data Mask Width
(Ports 0 and 1)

C_P0_MASK_SIZE

C_P1_MASK_SIZE

This attribute sets the number of mask bits for
Ports 0 and 1, depending on the data bus width
as determined by the port configuration.

Possible Values: “4“, “8“, “16“

http://www.xilinx.com

24 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 2: MCB Functional Description

Controller Port Enable C_PORT_ENABLE This six-bit value determines which of the
6 underlying 32-bit hardware ports are used in a
given port configuration.

Possible Values:

For example, 6'b001111 = ports 0 to 3
enabled

Address Mapping Order C_MEM_ADDR_ORDER This attribute determines how the byte address
presented to the User Interface maps to the
physical memory bank, row, and column address
bits. This attribute is based on a system
addressing scheme. This value should be set to
take the most advantage of MCB open bank
management capabilities.

Possible Values: “BANK_ROW_COLUMN“,
“ROW_BANK_COLUMN“

Arbitration Time Slot Count C_ARB_NUM_TIME_SLOTS This attribute sets the number of time slots in the
arbitration table. Most port configurations have
12 time slots, but port configurations with
5 active ports have 10 time slots in the arbitration
table to ensure equal arbitration.

Possible Values: “12“, “10”

Arbitration Time Slot Values C_ARB_TIME_SLOT[0:11] These 6-digit octal (18-bit) values set the port
priority for each time slot.

Possible Values:

For example, C_ARB_TIME_SLOT0 =
18'o012345 (sets Port 0 with the highest
priority down to Port 5 with the lowest
priority).

Controller Calibration Bypass
(Simulation)

C_MC_CALIB_BYPASS Directs the MIG tool to set up simulation files to
skip the controller calibration sequence for faster
simulation.

Note: This parameter is for simulation only.

Possible Values: “YES“, “NO“

Reserved Calibration Address
Space

C_MC_CALIBRATION_RA

C_MC_CALIBRATION_BA

C_MC_CALIBRATION_CA

Defines the starting row, bank, and column
address reserved for calibration. This attribute is
used for training pattern data during
recalibration to avoid overwrite of application
data.

Possible Values (any valid address is okay):

Examples:

C_MC_CALIBRATION_RA = 15'h0000

C_MC_CALIBRATION_BA = 3'h0

C_MC_CALIBRATION_CA = 12'h000

Table 2-3: Controller Attributes (Cont’d)

Controller Attributes Parameter Name(s) Description / Possible Values

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 25
UG388 (v2.3) August 9, 2010

Interface Details

Interface Details
As shown in the architecture block diagram of Figure 2-1, page 16, the MCB has two basic
interfaces: the internal User Interface to the FPGA logic and the external interface to the
memory device via the predefined I/O pins. The following subsections discuss the details
of all signals related to these two interfaces. As in the rest of this document, all descriptions
refer to the interface of the IP wrapper delivered by the CORE Generator or EDK tool
flows, not the interface of the underlying memory controller block primitive.

User (Fabric Side) Interface
The User Interface contains all the necessary signals for the user logic in the FPGA logic to
interact with the command path and datapath of the MCB ports. It also includes the
general clock and reset signals for the MCB as well as signals related to calibration, debug,
and self-refresh operation. The User Interface can be configured to have anywhere from
one to six ports as shown in Port Configurations, page 17.

Clock, Reset, and Calibration Signals

Table 2-4 shows the clock, reset, and calibration related signals of the MCB User Interface.

Calibration Mode C_MC_CALIBRATION_MODE This attribute determines whether the MCB
executes precise alignment and real-time
voltage/temperature compensation of the DQS
strobe (recommended) or simply uses a fixed
ratio of the bit period to offset DQS into the data
window.

Possible Values: “CALIBRATION” (precise DQS
alignment with voltage/temperature
compensation), “NOCALIBRATION” (fixed
DQS offset delay)

DQS Offset Delay Value C_MC_CALIBRATION_DELAY This attribute sets the fixed DQS offset delay as a
ratio of the bit period when
C_MC_CALIBRATION_MODE = “NO
CALIBRATION“.

Possible Values: “QUARTER“, “HALF“,
“THREEQUARTER“, “FULL“

Table 2-3: Controller Attributes (Cont’d)

Controller Attributes Parameter Name(s) Description / Possible Values

Table 2-4: Clock, Reset, and Calbration Signals

Signal Name Direction Description

async_rst Input Main system reset for the MCB.

calib_done Output

This active-High signal indicates the completion of all
phases of calibration during the start-up sequence of the
MCB. Transactions should not be submitted to the MCB until
this signal goes High to indicate that calibration has completed.
See Calibration in Chapter 4 for more information.

http://www.xilinx.com

26 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 2: MCB Functional Description

Command Path

Table 2-5 defines the signals related to the command path of the MCB User Interface. All
port signal names have the prefix pX, where X represents the port number (for example,
port 0 signals are prefixed with p0, port 1 with p1, and so forth).

mcb_drp_clk Input

This clock synchronizes the soft calibration module to the
sysclk_2x domain. It must be generated by the same PLL as
sysclk_2x to ensure that it is phase-synchronized to that
domain. See Clocking in Chapter 3 for more information.

pll_ce_0 Input
I/O clock enable strobe from BUFPLL_MCB. This signal
pulses High on every other clock cycle of sysclk_2x. It is
used for double data rate transfers in the I/O blocks.

pll_ce_90 Input
I/O clock enable strobe from BUFPLL_MCB. This signal
pulses High on every other clock cycle of sysclk_2x_180. It
is used for double data rate transfers in the I/O blocks.

pll_lock Input Lock signal from the BUFPLL_MCB block.

sysclk_2x Input

Main system clock for the MCB. This signal is generated by
the Spartan-6 FPGA PLL block and is rebuffered by the
BUFPLL_MCB driver to the I/O clock network. It operates
at two times the memory clock frequency (for example,
667 MHz for a 333 MHz memory interface).

sysclk_2x_180 Input
This input is the phase-shifted clock with the same
frequency as sysclk_2x. It is generated by the same
PLL/BUFPLL_MCB resources.

Table 2-4: Clock, Reset, and Calbration Signals (Cont’d)

Signal Name Direction Description

Table 2-5: Command Path Signals

Signal Name Direction Description

pX_cmd_addr[29:0] Input

Byte start address for current transaction. Addresses
must be aligned to port size:

32-bit ports: Lower two bits must be 0s.

64-bit ports: Lower three bits must be 0s.

128-bit ports: Lower four bits must be 0s.

pX_cmd_bl[5:0] Input

Burst length in number of user words for the current
transaction. Burst length is encoded as 0 to 63,
representing 1 to 64 user words (for example, 6'b00011
is a burst length 4 transaction). The user word width
equals the port width (for example, a burst length of 3 on
a 64-bit port transfers 3 x 64-bit user words = 192 bits
total).

pX_cmd_clk Input
User clock for the Command FIFO. FIFO signals are
captured on the rising edge of this clock.

pX_cmd_empty Output
This active-High empty flag for the Command FIFO
indicates no commands are queued in FIFO, although
there might be commands in flight.

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 27
UG388 (v2.3) August 9, 2010

Interface Details

Write Datapath

Table 2-6 shows all signals related to the write datapath of the MCB User Interface. All port
signal names have the prefix pX, where X represents the port number (for example, port 0
signals are prefixed with p0, port 1 with p1, and so forth).

pX_cmd_en Input
This active-High signal is the write-enable signal for the
Command FIFO. This signal is covered in more detail in
Chapter 4.

pX_cmd_error Output
This output indicates a Command Port error occurred
because the FIFO pointers were unsynchronized. An
MCB reset is required to recover from this condition.

pX_cmd_full Output
This active-High output is the full flag for the Command
FIFO. It indicates the FIFO cannot accept any more
commands and blocks writes to the Command FIFO.

pX_cmd_instr[2:0] Input

Command code for the current instruction. Bit 0
represents the READ/WRITE select, Bit 1 is Auto
Precharge enable, and Bit 2 represents Refresh, which
always takes priority:

Write: 3'b000

Read: 3'b001

Write with Auto Precharge: 3'b010

Read with Auto Precharge: 3'b011

Refresh: 3'b1xx

This signal is covered in more detail in Chapter 4.

Table 2-5: Command Path Signals (Cont’d)

Signal Name Direction Description

Table 2-6: Write Datapath Signals

Signal Name Direction Description

pX_wr_clk Input
This signal is the user clock for the Write
Data FIFO.

pX_wr_count[6:0] Output

Count value for Write Data FIFO. This
output indicates how many user words are
in the FIFO (from 1 to 64). A count value of
0 indicates the FIFO is empty. This signal
has a longer latency than the
pX_wr_empty flag. Therefore, the FIFO
could be empty or experience an underrun
even when the count is not 0.

pX_wr_data[PX_SIZE-1:0] Input

Write Data value to be loaded into Write
Data FIFO and sent to memory. PX_SIZE
can be 32, 64, or 128 bits, depending on
port configuration.

pX_wr_empty Output
This active-High signal is the empty flag
for the Write Data FIFO. It indicates there is
no valid data in the FIFO.

http://www.xilinx.com

28 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 2: MCB Functional Description

Read Datapath

Table 2-7 shows all signals related to the read datapath of the MCB User Interface. All port
signal names have the prefix pX, where X represents the port number (for example, port 0
signals are prefixed with p0, port 1 with p1, and so forth).

pX_wr_en Input

This active-High signal is the write enable
for the Write Data FIFO. It indicates that
the value on pX_wr_data is valid for
loading into the FIFO. Data is loaded on
the rising edge of pX_wr_clk when
pX_wr_en = 1 and pX_wr_full = 0.

pX_wr_error Output

This signal indicates a Write Data FIFO
error occurred because the FIFO pointers
were unsynchronized. An MCB reset is
required to recover from this condition.

pX_wr_full Output

This active-High signal is the full flag for
the Write Data FIFO. When this signal is
high, it prevents data from being loaded
into the FIFO.

pX_wr_mask[PX_MASKSIZE-1:0] Input

Data mask bits for Write Data. This mask is
loaded into the FIFO coincident with the
associated Write Data (pX_wr_data). One
mask bit is associated with each byte of
data. When a pX_wr_mask bit is High, the
corresponding byte of data is masked (that
is, not written to the memory).

pX_wr_underrun Output

This active-High signal is the underrun
flag. It indicates there was not enough data
in Write Data FIFO to complete the
transaction. The last valid data word is
written continuously to finish the burst. To
prevent underrun, make sure there is
enough data in the FIFO when issuing a
Write instruction to the Command FIFO.
The sys_rst signal must be asserted to reset
this flag and recover from this condition.

Table 2-6: Write Datapath Signals (Cont’d)

Signal Name Direction Description

Table 2-7: Read Datapath Signals

Signal Name Direction Description

pX_rd_clk Input This input is the user clock for the Read Data FIFO.

pX_rd_en Input

This active-High signal is the read enable for the
Read Data FIFO. Read Data is clocked out of the
FIFO on the rising edge of pX_rd_clk when
pX_rd_en = 1 and pX_rd_empty = 0.

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 29
UG388 (v2.3) August 9, 2010

Interface Details

Self-Refresh Signals

Table 2-8 shows the self-refresh signals accessible through the user interface. Self-refresh is
covered in more detail in Chapter 4.

pX_rd_data[PX_SIZE-1:0] Output

Read Data value returning from memory. This
signal is driven by the output of the Read Data
FIFO into FPGA logic. PX_SIZE can be 32, 64, or
128 bits, depending on the port configuration.

pX_rd_full Output

This active-High signal is the full flag for the Read
Data FIFO. When High, this signal prevents
additional data returning from the memory from
being loaded into the FIFO.

pX_rd_empty Output
This active-High signal is the empty flag for the
Read Data FIFO. It indicates there is no valid data
in the FIFO.

pX_rd_count[6:0] Output

Count value for Read Data FIFO. This signal
indicates how many user words are in the FIFO
(from 1 to 64). A count value of 0 indicates the FIFO
is empty. This signal has a longer latency than the
pX_rd_full flag. Therefore, the FIFO could be full
or experience overflow even when the count is less
than 64.

pX_rd_overflow Output

This active-High signal is the overflow flag. It
indicates that data was lost due to Read Data
continuing to return from the memory after the
Read Data FIFO was full.

To prevent overflow:

• Make sure there is enough room to store the
requested Read Data in the FIFO before issuing
a Read instruction to the Command FIFO.

• Be sure to account for any transactions in flight.

The sys_rst signal must be asserted to reset this
flag and recover from this condition.

pX_rd_error Output

This signal indicates a Read Data FIFO error
occurred because the FIFO pointers were
unsynchronized. An MCB reset is required to
recover from this condition.

Table 2-7: Read Datapath Signals (Cont’d)

Signal Name Direction Description

Table 2-8: Self-Refresh Signals

Signal Name Direction Description

selfrefresh_enter Input

This input is rising-edge sensitive. When asserted,
the MCB requests the memory device to enter self-
refresh mode. The signal must remain asserted until
the selfrefresh_mode signal goes active.

selfrefresh_mode Output
This active-High signal indicates the memory device
is in self-refresh mode.

http://www.xilinx.com

30 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 2: MCB Functional Description

Memory Device Interface
The Memory Device Interface contains all the necessary signals to communicate with the
external memory device. All these signals (Table 2-9) have predefined pin locations in
Spartan-6 devices. See UG385, Spartan-6 FPGA Packaging and Pinouts Product Specification
for detailed MCB pinout information for each device/package combination. In addition,
the soft calibration module generated by MIG requires allocation of an additional pin
(RZQ) for all MCB designs. RZQ is a required pin, but its location can be moved within the
MCB bank. When Calibrated Input Termination is selected in the MIG tool, a ZIO pin is
also generated for use with the soft calibration module. The ZIO location can also be
moved but must placed on a bonded I/O (i.e., a valid package pin) within the MCB bank.
See the “Setting FPGA Options” section in UG416, Spartan-6 FPGA Memory Interface
Solutions User Guide, for more information on the RZQ and ZIO pins.

Note: All predefined pins revert to general-purpose I/Os when an MCB is unused. In addition,
unused pins from an active MCB also revert to general-purpose I/Os. This includes higher order
address or bank address pins not needed for a particular density device, DQ data bits not needed for
a particular interface width, the reset and ODT signals when not needed for a memory standard, and
the UDQS / UDQS_n strobes for x4 or x8 interfaces. All other interface pins are required for all MCB
based designs. In addition, there are two exceptions to the general-purpose I/O recovery rules:

a. Data mask pins are paired such that if only LDM is used, UDM is lost as a general I/O. The
data mask pins are required in all MCB designs to support variable burst length requests at
the user interface. Therefore, both LDM and UDM are unavailable as general I/Os whenever
the MCB is used.

b. Data strobe pins are paired such that if only DQS is used (single-ended strobe), DQS_n is
lost as a general I/O. The same is true for UDQS and UDQS_n.

Table 2-9: Memory Device Interface Signals

Signal Name Direction Description

mcbx_dram_addr
[C_MEM_ADDR_WIDTH–1:0]

Output

Address bus to the memory device.
C_MEM_ADDR_WIDTH is set by the MIG
tool depending on the memory device
configuration (the maximum value is 15).

mcbx_dram_ba[2:0] Output
Bank Address bus to the memory device. The
MCB supports up to eight banks in a memory
device.

mcbx_dram_cas_n Output This signal is the active-Low column address
strobe to the memory device.

mcbx_dram_cke Output This active-High signal is the clock enable to
the memory device.

mcbx_dram_clk Output
This output is the differential clock (p output)
to the memory device.

mcbx_dram_clk_n Output
This output is the differential clock (n output)
to the memory device.

mcbx_dram_ddr3_rst Output
This signal is the DDR3 reset to the memory
device.

mcbx_dram_dq
[C_NUM_DQ_PINS–1:0]

Bidir

Bidirectional data bus to memory device.
C_NUM_DQ_PINS is set by the MIG tool
depending on the memory device
configuration (valid values are 4, 8, and 16).

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf
http://www.xilinx.com/support/documentation/user_guides/ug385.pdf

Spartan-6 FPGA Memory Controller www.xilinx.com 31
UG388 (v2.3) August 9, 2010

Interface Details

Note: Refer to PCB Layout Considerations in Chapter 3 for board design requirements related to
the CS#, ODT, and CKE pins of the memory device.

mcbx_dram_dqs Bidir
Bidirectional data strobe for DQ[7:0]. This
signal is an input during Read transactions
and an output during Write transactions.

mcbx_dram_dqs_n Bidir

Bidirectional complementary data strobe for
DQ[7:0]. This signal is an input during Read
transactions and an output during Write
transactions.

mcbx_dram_ldm Output
This output is the data mask for the lower
data byte (DQ[7:0]) for x16, x8, or x4
configurations.

mcbx_dram_odt Output
This output is the on-die termination signal.
ODT is supported for DDR2 and DDR3.

mcbx_dram_ras_n Output
This active-Low signal is the row address
strobe to the memory device.

mcbx_dram_udm Output
This output is the data mask for the upper
data byte (DQ[15:8]) when interfacing to a x16
device.

mcbx_dram_udqs Bidir
Bidirectional data strobe for DQ[15:8]. This
signal is an input during Read transactions
and an output during Write transactions.

mcbx_dram_udqs_n Bidir

Bidirectional complementary data strobe for
DQ[15:8]. This signal is an input during Read
transactions and an output during Write
transactions.

mcbx_dram_we_n Output
This signal is the active-Low write enable to
the memory device.

rzq Bidir

Required pin for all MCB designs. When
Calibrated Input Termination is selected in
the MIG tool, the RZQ pin should have a
resistor of value 2R from the pin to ground,
where R is the desired input termination
value. In all other cases, the RZQ pin should
be left as a no-connect pin. The RZQ pin can
be moved to any valid package pin within the
MCB bank.

zio Bidir

No Connect signal used with the soft
calibration module when Calibrated Input
Termination is selected. ZIO must be placed
on a valid package pin within the MCB bank,
and there should be no board trace attached
to this pin (i.e., no connect). ZIO is not
generated for designs that do not use
Calibrated Input Termination.

Table 2-9: Memory Device Interface Signals (Cont’d)

Signal Name Direction Description

http://www.xilinx.com

32 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 2: MCB Functional Description

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 33
UG388 (v2.3) August 9, 2010

Chapter 3

Designing with the MCB

This chapter provides detailed information on how to design with the Spartan®-6 FPGA
MCB. It contains these sections:

• Design Flow

• Supported Memory Devices

• Simulation

• Resource Utilization

• Clocking

• Migration and Banking

• PCB Layout Considerations

Design Flow
There are two supported design flows for the MCB:

• Non-embedded design flow

• Conventional FPGA design with the Xilinx® ISE® tool flow

• MIG tool is used within the CORE Generator™ tool for MCB designs

• Embedded design flow

• Processor-based FPGA system design with EDK tool flow

• IP Configurator in Xilinx Platform Studio (XPS) is used within the EDK
environment for MCB designs

Both tool flows provide a simple method for developing a reliable interface to external
memory devices. A step-by-step GUI driven flow allows an MCB based design to be
configured and parameterized to meet the precise needs of the application.

The MIG tool flow actually has two “wrapper” levels: a lower-level wrapper
(mcb_raw_wrapper.v) and the top-level wrapper (for example, memc3_wrapper.v).
The lower-level wrapper incorporates all of the necessary silicon blocks (MCB, I/O, etc.)
and soft logic (soft calibration module), required for the solution. It also provides access to
all signals associated with the underlying hardware implementation of the User Interface
ports and calibration logic. The top-level wrapper handles signal reassignment, tying off
lower-level wrapper signals, as needed, and passing down the parameter values to the
lower wrapper based on the user selections in the MIG tool.

The top-level wrapper presents a clean interface of only those signals needed to implement
the MCB-based design as configured during the MIG tool flow. For example, while the
lower-level wrapper always shows all 6 of the native 32-bit ports on the User Interface, the
top-level wrapper reassigns signals, ties off unused ports, and concatenates buses to

http://www.xilinx.com

34 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 3: Designing with the MCB

present the port interface the user expects, such as a single 64-bit port. The top-level
wrapper is the one that is subsequently integrated into the larger FPGA design.

The lower-level wrapper (mcb_raw_wrapper.v) is documented throughout this User
Guide. The parameter and signal lists in Chapter 2, for example, are all described with
respect to this lower-level wrapper. This wrapper does not change based on the choices
made in the MIG tool GUI flow, whereas the top-level wrapper is customized as a result of
the user selections.

In addition, the embedded design flow (EDK) uses the same lower-level wrapper as the
foundation for creating the Multi-Port Memory Controller (MPMC) peripheral. The IP
configurator in XPS allows the user to add the necessary soft bridges on top of the lower-
level wrapper to create the desired peripheral interfaces, such as:

• PLB interface

• Xilinx Cache Link (XCL) interface

• Local Link (LL) interface

• Other Personality Interface Modules (PIMs) supported by EDK

Figure 3-1 illustrates how the lower-level wrapper is used for both the non-embedded
(MIG) and embedded (EDK) design flows.

CORE Generator Tool
Figure 3-2 shows the high-level design flow for integrating an MCB based memory
interface into a non-embedded (conventional) FPGA design. The “Getting Started” chapter
in UG416, Spartan-6 FPGA Memory Interface Solutions User Guide, provides a detailed
step-by-step guide to Phase 1 of this design flow. Phase 2 and Phase 3 are outside the scope
of this document, but detailed instructions on the ISE tool flow can be found elsewhere in
the Xilinx Documentation Library.

X-Ref Target - Figure 3-1

Figure 3-1: Common Lower-Level Wrapper for Non-embedded and Embedded Design

Top-level
User

Interface

UG388_c4_01_050409

Top-level
User

Interface

PLB Ports

Soft
Bridges

Top-level Wrapper (MIG)

Lower-level Wrapper

Top-level Wrapper (EDK)

Embedded Design
(EDK / XPS)

Non-embedded Design
(MIG/CORE Generator Tool)

Lower-level Wrapper

MCB

Soft Calibration
Module

I/OXCL

LL

Ports

MCB

Port
Grouping

Signal
Tie Off

Soft Calibration
Module

I/O

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf

Spartan-6 FPGA Memory Controller www.xilinx.com 35
UG388 (v2.3) August 9, 2010

Supported Memory Devices

Supported Memory Devices
Table 3-1 provides a list of memory devices to be verified to operate with the MCB on a
Xilinx hardware verification platform. These devices can be selected in the MIG tool
(or EDK) GUI flow from the drop-down list of supported devices. Xilinx will add devices
to the MIG drop-down supported device list in future releases, but these devices will
receive “simulation only” verification. Additionally, custom devices can be created by the
user in the MIG tool; however, these do not have simulation or hardware verification by
Xilinx. See the “Setting Controller Options” section in UG416, Spartan-6 FPGA Memory
Interface Solutions User Guide, for more information.

X-Ref Target - Figure 3-2

Figure 3-2: MCB Design Flow for Non-embedded (Conventional) FPGA
Applications

Phase 2Phase 1 Phase 3

Integrate MIG UCF
Constraints into Overall
Design Constraints File

Import MIG RTL and
Build Options into
ISE Tool Project

Perform Functional
Simulation with MIG
Design Integrated

Implement Design

UG388_c4_02_050409

Synthesis, MAP, PAR

Perform Timing
Simulation on

Completed Design

Verify Design
in Hardware

Generate RTL and UCF Files

Launch MIG Tool
from Inside the

CORE Generator Tool

Make MIG selections for
FPGA/Memory Parameters

Perform Functional
Simulation on MIG
Example Design

(optional)

Table 3-1: Supported Memory Devices for the MCB

Standard Vendor Part Number Width Density

DDR3 Micron MT41J64M16xx-187E 16 1 Gb

DDR3 Micron MT41J256M8xx-187E 8 2 Gb

DDR3 Micron MT41J128M8xx-187E 8 1 Gb

DDR3 Micron MT41J256M4xx-187E 4 1 Gb

DDR3 Micron MT41J512M4xx-187E 4 2 Gb

DDR2 Micron MT47H256M4xx-25E 4 1 Gb

DDR2 Micron MT47H64M8xx-25E-IT 8 512 Mb

DDR2 Micron MT47H128M8xx-25 8 1 Gb

DDR2 Micron MT47H128M16xx-3 16 2 Gb

DDR2 Micron MT47H256M4xx-3 4 1 Gb

DDR2 Micron MT47H16M16xx-3 16 256 Mb

DDR2 Micron MT47H32M16xx-37E 16 512 Mb

DDR2 Micron MT47H32M8xx-37E 8 256 Mb

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf

36 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 3: Designing with the MCB

Simulation
The simulation model of the underlying MCB contained within the MIG (or EDK) wrapper
is encrypted as specified in Verilog LRM-IEEE Std 1364-2005. This is similar to other IP
offered by Xilinx, such as the GTP transceiver and Integrated Endpoint blocks for PCI
Express® designs.

Xilinx supports the following simulators for this encryption methodology:

• ModelSim 6.4b and above

The encrypted model of the MCB is automatically compiled when the usual COMPXLIB
script is run, provided the appropriate version of the simulator is available on the
computer. When running a simulation for a Verilog based design, the following library
must be referenced: secureip.

For most simulators, this can be done by using the -L switch as an argument to the
simulator, such as -L secureip.

Note: If VHDL is used as the design entry language, a mixed-language license is required for
ModelSim to simulate designs that include the MCB.

For more information on simulating IP blocks using the secureip methodology, see UG626,
Synthesis and Simulation Design Guide.

DDR2 Micron MT47J64M16xx-3 16 1 Gb

DDR2 Micron MT47J256M4xx-37E 4 1 Gb

DDR2 Micron MT47J128M8xx-3 8 1 Gb

DDR2 Elpida EDE1116ACBG-8E 16 1 Gb

DDR2 Elpida EDE5116AJBG-8E 16 512 Mb

DDR2 Hynix HYB18TC512160B2F-2.5 16 512 Mb

DDR Micron MT46V32M16xx-5B-IT 16 512 Mb

DDR Micron MT46V32M8xx-5B 8 256 Mb

DDR Micron MT46V64M4xx-5B 4 256 Mb

LPDDR Micron MT46H32M16xxxx-5 16 512 Mb

LPDDR Micron MT46H16M16xxxx-6-IT 16 256 Mb

LPDDR Micron MT46H16M16xxxx-75-IT 16 256 Mb

LPDDR Micron MT46H64M16xxxx-5L-IT 16 1 Gb

LPDDR Micron MT46H64M16xxxx-6L-IT 16 1 Gb

Table 3-1: Supported Memory Devices for the MCB (Cont’d)

Standard Vendor Part Number Width Density

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf

Spartan-6 FPGA Memory Controller www.xilinx.com 37
UG388 (v2.3) August 9, 2010

Resource Utilization

Resource Utilization
The MIG (or EDK) wrapper produced by the GUI design flow incorporates all of the device
resources required for implementation of an MCB based memory interface. For the most
part, the wrapper files are simply managing signal name reassignment and connectivity
between the silicon resources (for example, MCB to I/O block connections), and thus do
not consume any measurable FPGA logic. However, the soft calibration module contained
within the wrapper does consume a small amount of FPGA logic resources. In addition,
there are specific clocking requirements for the MCB (see Clocking) that result in use of
some general clocking resources.

Table 3-2 shows the resource utilization associated with an MCB design, excluding any
logic required in the user design to control the User Interface ports. This table uses a DDR3
interface with eight banks, differential strobes, and data masking to calculate a maximum
pin count. Other memory standards and configurations use fewer pins.

Clocking
This section describes the clocking requirements for implementing a memory interface
based on the MCB. The MIG (or EDK) tool automatically generates a clocking
infrastructure that fully complies with these requirements. The MCB requires three basic
types of clocks:

• MCB system clocks determine the operating frequency of the memory controller and
physical interface to the external memory device.

• Calibration clock determines the operating frequency of the calibration logic.

• User clocks determine the operating frequency of the User Interface ports. These
clocks can be completely asynchronous to the system and calibration clocks. The
Command and Data Path FIFOs handle the necessary clock domain transfer from the
User Interface to the internal controller logic.

Figure 3-3 shows the recommended clock distribution scheme for the MCB system and
calibration clocks. The MCBs are located in the I/O regions on the left and right side of the
device, and must therefore be driven by the I/O clock network. The I/O clock network is
designed for significantly higher frequencies than the global clock network, allowing
memory interfaces to operate at up to 800 Mb/s.

Note: CLKOUT0 and CLKOUT1 are the only outputs of the PLL that can be connected to the
BUFPLL_MCB driver. These connections must be made exactly as shown in Figure 3-3.

Table 3-2: Resource Utilization for Each MCB Based Memory Interface

Resource
Memory Interface Width

x4 x8 x16

Memory Controller Block (MCB) 1 1 1

Predefined I/O Pins: Address,
Data, Control, etc.

35 39 50

Soft Calibration Module Logic < 100 Slices < 100 Slices < 100 Slices

PLL Block 1 1 1

BUFPLL_MCB Buffer 1 1 1

http://www.xilinx.com

38 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 3: Designing with the MCB

To create the desired system clock frequency on the I/O clock network, an external clock
source drives one of the PLLs in the center column of the device. The external clock
frequency is not critical as long as the PLL can synthesize the desired MCB system clocks
from it. In general, the preferred PLL location is the one nearest the center of the device that
minimizes the physical distance between the PLL and the BUFPLL_MCB block. This PLL
location is strongly recommended for larger devices with six PLLs.

The PLL generates two system clock outputs, sysclk_2x and sysclk_2x_180, that are twice
the frequency of the desired memory clock (for example, for a 667 Mb/s DDR2 interface
with a memory clock equal to 333 MHz, the system clocks are set to 667 MHz) and
180 degrees out of phase from each other. Only two clock lines are available on each side of
the device to drive the I/O clock network from the PLLs. The pair of system clocks uses
these two clock lines to connect to the MCBs on the left or right side of the device. Thus for
devices with four MCBs, the two MCBs on the same side of the device must share the same
system clock pair and therefore must run at the same data rate, although the memory
standard implemented can be different. DCMs do not have access to the I/O clock network
and cannot, therefore, be used to drive MCBs. It is also possible to drive MCBs on both
sides of the device from a single PLL. In this case, two BUFPLL_MCB blocks (one on each
side of the device) must be driven by the shared PLL.

When the pair of system clocks reaches the I/O clock network, they are rebuffered by a
BUFPLL_MCB driver. This driver also creates clock enable strobes required by the MCB:
pll_ce_0 and pll_ce_90. The attributes of the BUFPLL_MCB primitive should be set as
follows to create the necessary clock enable strobe behavior for the MCBs:

• LOCK_SRC = “LOCK_TO_0”

• DIVIDE = 2

The rebuffered full rate system clocks (2X clocks) are used in the PHY layer of the interface
to create the necessary double data rate (DDR) signaling at the I/O pins (for example, a
667 MHz clock is used to generate an effective 667 Mb/s DDR signal at the I/O). A
divide-by-two circuit in the MCB creates what is traditionally considered the memory
clock frequency (for example, 333 MHz for a 667 Mb/s DDR interface). These 1X clocks
drive the controller, arbiter, and other single data rate (SDR) logic.

X-Ref Target - Figure 3-3

Figure 3-3: Recommended System and Calibration Clock Distribution

CLK
CLKIN1

PLL
MIG WrapperI/O Clock

Network

BUFPLL_MCB

CLKFB IN

CLKOUT0

UG388_c4_03_080310

PLLIN0

PLLIN1

SERDESSTROBE0

IOCLK0

IOCLK1

SERDESSTROBE1

CLKOUT1

CLKOUT2

CLKFB OUT

CLKB

IBUFGDS

BUFG

To second MCB on
same side of device

(if available)

pll_ce_0

sysclk_2x

sysclk_2x_180

pll_ce_90

mcb_drp_clk

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 39
UG388 (v2.3) August 9, 2010

Clocking

The calibration related clock, mcb_drp_clk, must be generated by the PLL and must be
phase-synchronized (i.e., in phase) with the sysclk_2x domain. The calibration clock rate is
limited by normal static timing analysis, with a typical achievable frequency of 100 MHz.
In general, a calibration clock frequency of at least 50 MHz should be used to allow the
MCB to complete calibration operations in a reasonable period of time.

A set of user clocks is associated with each of the User Interface ports (port number X = 0
to 5) used in a given design, as follows:

• pX_cmd_clk: Command FIFO user clock for clocking in the Address, Instruction, and
Burst Length from the FPGA logic into the FIFO.

• pX_wr_clk: Write Data FIFO user clock for loading write data from the FPGA logic
into the FIFO in preparation for a burst to memory.

• pX_rd_clk: Read Data FIFO user clock for clocking out data returning from the
memory into the FPGA logic.

The user clocks are completely asynchronous from the system and calibration clocks and
therefore they can operate at any frequency dictated by the FPGA logic portion of the
design. The FIFOs inside the MCB handle the necessary clock domain transfer. For best
utilization of the available memory bandwidth, the user clocks should be set at or above
the frequency determined by the ratio of the User Interface to the external Memory Device
interface. For example:

• For a DDR3 800 Mb/s interface with the memory clock = 400 MHz and a x8 bit
memory device:

The result is 16 bits of data transfer per clock cycle (8 bits on each clock edge)

• For a x64 bit User interface:

The user clock should be set at or above (16/64) * 400 MHz = 100 MHz

While not technically required, it is also highly recommended that all three user clocks for
a port (pX_cmd_clk, pX_wr_clk, and pX_rd_clk) be driven by the same clock source from
the FPGA logic to avoid complex timing and synchronization issues in the user design.

Modifying the Clock Setup
By default the MIG tool sets up the clocking infrastructure assuming that the user input
clock (CLKIN1 to the PLL) is operating at the memory clock frequency. To modify the
clocking setup to create the necessary MCB clocks from a different input clock frequency or
to adjust the user or calibration clock frequencies, these PLL parameters can be adjusted at
the top level of the MIG example or user design:

• Cx_CLKFBOUT_MULT

• Cx_DIVCLK_DIVIDE

• Cx_CLKOUT0_DIVIDE (for sysclk_2x)

• Cx_CLKOUT1_DIVIDE (for sysclk_2x_180)

• Cx_CLKOUT2_DIVIDE (for user clock)

• Cx_CLKOUT3_DIVIDE (for calibration clock)

where x represents the MCB block number.

There are two options for determining the correct values for these parameters:

1. Use the Clocking Wizard found in the CORE Generator tool to determine the
appropriate parameter settings based on the desired input and output clock
frequencies for the PLL. Choose Manual Selection and the PLL_BASE primitive on

http://www.xilinx.com

40 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 3: Designing with the MCB

the opening dialog page to ensure that a PLL is used. Only the listed PLL parameter
values produced by the Clocking Wizard should be transferred back into the MIG
design. No other output from the Clocking Wizard is needed. The Clocking Wizard
also determines the resulting output jitter from a specific PLL configuration that can be
used to validate the main MCB system clocks against the memory device input clock
jitter requirements.

2. Refer to the “PLL” chapter in UG382, Spartan-6 FPGA Clocking Resources User Guide to
verify the proper settings of the listed PLL parameters for the desired input and output
clock frequencies for the PLL. This method requires a better understanding of aspects
such as keeping the PLL VCO operating frequency within the specified limits.

Migration and Banking
The MCB located on the left side (for devices with two MCBs) or lower-left side (for
devices with four MCBs) of the device is the most flexible to design with in most situations
(see Figure 3-4). The predefined pins for the MCB in this location have the fewest number
of “multipurpose” pin functions, while the MCBs on the right side of the device tend to
have pins with more shared functionality.

For example, some bank 1 MCB pins are shared with the Byte-wide Peripheral Interface
(BPI) pins that can be used to configure the Spartan-6 device from a parallel flash device.
These dual-purpose pins can be used for a BPI or an MCB interface, but not both. Thus, it
is necessary to consider what other components will be in the system, and how they will
interface to the Spartan-6 device when planning the MCB interfaces. The MCBs on both
sides of the device have pins that are shared with global clock (GCLK) pins and PCI pins,
but overall the left (or lower left) side MCB has the fewest restrictions related to pin usage.

In addition, it is possible to migrate between Spartan-6 family members in the same
package type (for example, migrate from an LX16 device to an LX25 device in the same
CSG324 package) while maintaining the same MCB predefined pin locations. This applies
to all MCB locations. In general, any particular device can migrate up or down at least one
device density in the same package type. Refer to the Spartan-6 Family Overview for more
details on available devices and package types.

X-Ref Target - Figure 3-4

Figure 3-4: MCB3 is the Preferred Location for Migration and Pin Flexibility

Four MCB DevicesTwo MCB Devices

MCB
3

MCB
1

MCB
3

UG388_c4_04_050409

MCB
1

MCB
4

MCB
5

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug382.pdf

Spartan-6 FPGA Memory Controller www.xilinx.com 41
UG388 (v2.3) August 9, 2010

PCB Layout Considerations

PCB Layout Considerations
This section lists PCB layout considerations, which should be reviewed before beginning
board design for an MCB based memory interface. The Spartan-6 FPGA PCB Designer’s
Guide should also be consulted for information regarding proper device decoupling,
overall power distribution system design, and other general PCB guidelines. Additional
references for PCB layout and signal integrity analysis of DDR memory interfaces can be
found in Appendix A, References.

All trace length calculations assume an average 165 ps of electrical delay per inch of signal
trace.

General Guidelines
• Only internal PCB layers should be used to route memory interface signals between

the FPGA and memory devices. Breakout vias to connect component balls are
excluded from this requirement.

• Top or bottom layer routing can be considered for routing to external termination
resistors (if used) when placed in a fly-by mode after the memory component.

• Memory interfaces without external terminations should have a maximum of two
vias.

• Memory interfaces with external terminations should have a maximum of three vias.

• Once a signal is broken out to an internal signal layer, it must complete its routing on
that layer. Terminating the signal to a via permits final routing to the component pad
via and connection at the top or bottom layer of the board. PCB layer hopping is not
allowed.

• Overall trace length should be minimized. Traces should be 3 inches or less.

• Trace widths should be 3 to 5 mils.

• Trace spacing should be three times the trace width.

• Signals must not be routed over splits or voids.

• Routing of differential pairs adjacent to noisy signal lines or high-speed switching
devices such as clock chips should be avoided.

• The spacing between differential clocks/strobes and other signals on the same PCB
layer should be 20 mil. The 20 mil spacing should be maintained when using
serpentine routing for length matching.

• Differential clocks/strobes are to be routed as 100Ω differential signals. The clock pairs
must be routed on the same PCB layer with no layer changes or hops after the initial
pad to via breakout.

• Series terminations (if used) should be as close to the FPGA as possible.

• Parallel terminations (if used) should be as close to the DRAM as possible.

• Parallel termination resistors should be placed on a top or bottom layer VTT island.

• Board designers should ensure that clock lines are routed differentially and correct
trace widths or clearances maintained to achieve the target differential impedance.
Routing the signals differentially reduces the flight time of the clocks when compared
to the single-ended signals. Because of this, most DDR2 design guides recommend
that clock signals be routed at the same length or longer than the address, control, and
command signals to compensate for this timing variation.

http://www.xilinx.com

42 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 3: Designing with the MCB

Data, Data Mask, and Data Strobe Guidelines
The Data (DQ), Data Mask (DM), and Data Strobe (DQS) signals should receive the highest
priority (that is, routed first), because they are the highest speed DDR signals.

• DQ, DM, and DQS signals should be routed in a data group (per byte). Each group
should have similar loading and routing to maintain timing and signal integrity.

• The provided spacing should be 20 mil between a data group and any other signals.

• DQS signals should be isolated from other signals by 20 mil to avoid crosstalk.

• There should be a maximum of ±25 ps electrical delay (±150 mil) between any
DQ/DM and its associated DQS strobe.

• A data group should be referenced to a GROUND plane.

• DQ bit swapping at the memory interface is permitted to facilitate layout. Swapping
should only be done within a data group.

• DQS to DQS_N trace lengths should be matched (±10 mil).

• Memory terminations (if external terminations are used) should be placed after the
associated memory component in a fly-by fashion.

• For 16-bit DDR devices, the LDQS/LDQS_N and UDQS/UDQS_N trace lengths
should be matched within ±25 ps of the electrical delay (±150 mil).

Address, Control, and Clock Guidelines
When the data groups have been routed, the next highest priority is the differential clock
(CK / CK_N). The clock should be routed first because all address and control trace length
matching must be referenced to the differential clock PCB trace length, which might need
to be adjusted as the layout task proceeds.

• CK to CK_N trace lengths must be matched (±10 mil).

• CK and DQS trace lengths must be matched (±250 mil) to maximize setup and hold
margins.

• There must be a maximum ±50 ps electrical delay (±300 mil) between any
address/control signals and the associated CK and CK_N differential clock FPGA
output.

• Address and control signals can be referenced to a POWER plane if a GROUND plane
is not next to this group of signals in the PCB stack-up.

• To avoid crosstalk, address and command signals should be kept on a different
routing layer from DQ, DQS, and DM.

• Differential clock terminations (if external terminations are used) must be located as
close as possible to the load, after the clock pads of the PCB. PCB trace lengths used in
trace length matching must exclude the CLINE length of the PCB trace from memory
ball to terminating resistor.

• Memory terminations should be placed (if external terminations are used) after the
associated memory component in a fly-by fashion.

Additional Board Design Requirements
In addition to the PCB layout guidelines detailed in this section, these board design
requirements must be implemented:

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 43
UG388 (v2.3) August 9, 2010

PCB Layout Considerations

• The active-Low Chip Select (CS#) pin of the target memory device should be
connected to ground on the board. Because the MCB only supports connections to a
single memory component, it does not provide a signal to control the CS# input.
Contact your memory vendor for more information, if needed.

• For DDR3 memory devices, the RESET and CKE signals should each have a 4.7 kΩ
resistor to ground to ensure that these signals are Low during memory initialization.

• For DDR2 memory devices, the ODT and CKE signals should each have a 4.7 kΩ
resistor to ground to ensure that these signals are Low during memory initialization.

• If the HSWAPEN pin on the Spartan-6 device is Low or grounded during
configuration, internal pull-ups to VCCO are enabled on all device I/O pins until
configuration completes, including any VREF pins associated with MCB usage. If the
VREF level is generated from a resistor divider, the temporary internal pull-ups might
elevate the level of the VREF pins during device configuration. The designer should
ensure that the MCB is held in reset until the VREF level has returned to a stable level
to avoid MCB calibration and operation with an invalid VREF. For more information,
see the “Configuration” section in the “I/O Pin and Clock Planning” chapter of
UG393, Spartan-6 FPGA PCB Design and Pin Planning Guide.

Simultaneous Switching Output Considerations
As noted in Block Diagram in Chapter 1, the MCB utilizes the general I/O blocks (IOBs)
associated with the predefined pin locations to create the external interface to the memory
device. The MIG tool automatically configures these IOB locations to implement the
required I/O standard for the selected memory type (e.g., SSTL18 for DDR2, SSTL15 for
DDR3).

Hardware characterization of MCB based memory interfaces indicates there are no
Simultaneous Switching Output (SSO) related restrictions when using the predefined IOB
locations up to their maximum extent (i.e., the maximum number of data and address pins
in the interface). Refer to DS162, Spartan-6 FPGA Data Sheet: DC and Switching
Characteristics and UG361, Spartan-6 FPGA SelectIO Resources User Guide for more
information on SSO characteristics. When placing signals on any remaining pins in the
bank, it is recommended that they are used as follows:

Single-ended output with the low drive strength, unterminated standards LVCMOS
4 mA or LVCMOS 2 mA

http://www.xilinx.com
http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf
http://www.xilinx.com/support/documentation/user_guides/ug361.pdf
http://www.xilinx.com/support/documentation/user_guides/ug393.pdf

44 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 3: Designing with the MCB

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 45
UG388 (v2.3) August 9, 2010

Chapter 4

MCB Operation

This chapter provides detailed information on the operation of the Spartan®-6 FPGA
MCB. It contains these sections:

• Startup Sequence

• Calibration

• Instructions

• Addressing

• Command Path Timing

• Write Path Timing

• Read Path Timing

• Memory Transactions

• Self Refresh

• Suspend

• Byte Address to Memory Address Conversion

• Transaction Ordering and Coherency

Startup Sequence
Figure 4-1 shows the startup procedure for the MCB. After the FPGA has been fully
configured and the PLL providing the system clocks has locked, a number of initialization
and calibration steps are automatically performed by the MCB to prepare it for normal
operation.

http://www.xilinx.com

46 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 4: MCB Operation

Notes relevant to Figure 4-1:

1. The soft calibration module implements some aspects of Phases 1, 2, and 3 of
calibration.

2. The MCB hard calibration logic does NOT perform individual per-bit deskew of the
DQ data bus. Follow the guidelines in PCB Layout Considerations, page 41 to ensure
that DQ/DQS board traces are properly length matched.

The first major operation is Phase 1 of calibration. In this step, the soft calibration module
measures the value of an external resistor on the RZQ pin to determine the desired on-chip
Input Termination value for several of the pre-defined MCB pins (e.g., DQ bus). This only
occurs if the user selects the Calibrated Input Termination option in the MIG GUI flow (see
the “Setting FPGA Options” section in UG416, Spartan-6 FPGA Memory Interface Solutions
User Guide). Otherwise an approximate uncalibrated on-chip termination or external
termination is assumed, and this startup step is skipped.

The second major step of the startup sequence is to load the memory device mode registers
with the desired parameters.

After the memory device has been configured, Phase 2 of calibration occurs. This phase
adds delay to the input path of the DQS strobes entering the FPGA. The goal is to shift the
DQS strobes into the center of what becomes the Read Data capture window.

Once all of the operations in the startup sequence have completed, the MCB enters normal
operation. Commands and Data can be loaded into the User Interface FIFOs while the
startup sequence is in progress, but no commands are executed until calibration completes
and the block enters normal operation.

During normal operation, the soft calibration module continuously monitors the tap delay
values of the IDELAY element used to delay the DQS input paths (for more information on
IDELAY, see the Spartan-6 FPGA SelectIO™ Resources User Guide). The intent is to measure
any change in the per tap delay value due to voltage or temperature variations during
operation. If a shift in tap delay value is detected, the tap delay count on the DQS strobe
input paths can be adjusted to keep them centered in the Read Data capture window. The
update to the IDELAY values is done during memory REFRESH operations to avoid
impacting normal data operations and controller efficiency. Phase 3 of calibration is known
as continuous DQS tuning.

See Calibration for more details on all phases of calibration.

X-Ref Target - Figure 4-1

Figure 4-1: MCB Startup Sequence

Phase 2 Calibration

DQS Centering

Normal Operation
Begins

UG388_c5_01_021910

Phase 3 Calibration

Continuous
DQS Tuning

FPGA
Configuration
and PLL Lock

Memory Device
Mode Registers

Loaded

Phase 1 Calibration

Input Termination

http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf
http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 47
UG388 (v2.3) August 9, 2010

Calibration

Calibration
To achieve optimum signal integrity and maximum timing margin (hence, highest
performance) for the memory interface, the MCB automatically performs several forms of
calibration as briefly outlined in Startup Sequence, page 45. The hard calibration logic in
the MCB and the soft calibration module generated by the MIG tool (or EDK) work
together to implement a reliable and flexible calibration scheme. Each phase of calibration
is discussed in greater detail below.

Note: The descriptions of calibration phases 2 and 3 in this section assume that the
C_MC_CALIBRATION_MODE attribute is set to “CALIBRATION” as described in Table 2-2, page 20.

Phase 1: Input Termination
On-chip termination reduces component count and improves signal integrity by moving
the termination as close to the endpoint of the signal transmission as possible. The MIG
and EDK GUI interfaces allow “Calibrated Input Termination” to be selected for the MCB
pre-defined pins. This feature creates an on-chip input termination on MCB pins that has
been calibrated based on an external resistor, making it more precise than when using the
“Uncalibrated Input Termination” option.

The soft calibration module uses two I/O pins, RZQ and ZIO, generated by the MIG tool
(or EDK) to perform calibration of the input termination. RZQ is a required pin for all MCB
designs. When Calibrated Input Termination is used, a resistor must be connected between
the RZQ pin and ground with a value that is twice (2R) that of the desired input impedance
(e.g., a 100Ω resistor to achieve a 50Ω effective input termination). RZQ should be left as a
no-connect (NC) pin for designs not using Calibrated Input Termination. In addition, the
RZQ pin must be within the same I/O bank as the memory interface pins.

The ZIO pin is only required for designs using Calibrated Input Termination and must be
a no-connect pin (i.e., not connected to any PCB trace) assigned to a valid package pin (i.e.,
bonded I/O) location within the MCB bank. The default locations of the RZQ and ZIO pins
can be found in the UCF constraints files.

The soft calibration module relies on the VREF supply required for SSTL I/O standards to
perform the necessary input termination calibration. LPDDR memory does not use
calibrated input termination or an SSTL type I/O standard and therefore does not require
VREF.

Phase 1 of calibration effectively measures the value of the external 2R resistor and
programs the I/O blocks of the MCB pins to create a split termination between VCCO and
GND. This scheme creates a Thevenin equivalent termination to VCCO / 2 with value R as
shown in Figure 4-2. The resulting input termination is dynamically disabled when the
MCB pin is driven as an output (e.g., a DQ data pin during a Write transaction) and
enabled at all other times to properly terminate incoming signals.

http://www.xilinx.com

48 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 4: MCB Operation

Phase 2: DQS Centering
For optimal performance and maximum timing margin, the DQS strobe edges must be
centered in the Read Data capture window with respect to the input capture flip-flop.
Phase 2 of calibration is responsible for this DQS centering operation.

The DDR memory device output pins transmit the Read Data (DQ) and DQS strobes edge-
aligned to the FPGA input pins as shown in Figure 4-3. For reliable operation, the DQS
strobe must be delayed with respect to the DQ bits so that it captures the Read Data away
from the transition region of the data bus.

During this phase, the tap delay count of the IDELAY block in the DQS strobe input path is
incremented to shift the internal DQS signal at the capture flip-flop into the center of what
will become the Read Data capture window as shown in Figure 4-3.

Phase 3: Continuous DQS Tuning
Voltage and temperature variations during operation cause changes in the IDELAY tap
values. Because the DQS strobe is delayed by half a bit period more than the DQ bits, it
uses significantly more IDELAY taps. Therefore, if the per tap delay value of the IDELAY
elements changes in response to voltage or temperature drift, the delay on the DQS strobe
input path sees a disproportionate shift relative to the DQ bits.

To compensate for voltage and temperature related shift of the DQS strobes, Phase 3 of
calibration runs continuously during normal operation. It uses the soft calibration module

X-Ref Target - Figure 4-2

Figure 4-2: Calibrated Input Termination

OUT

VCCO

IN

2R

2R R
MCB
Pin

Split Termination Implemented

OUT

VCCO / 2

IN

MCB
Pin

Thevenin Equivalent
UG388_c5_02_050109

X-Ref Target - Figure 4-3

Figure 4-3: Phase 2 of Calibration - DQS Centering

Data 0

Net
Delay

DQS

External (at Pin)

Before Phase 2

DQ Bus

DQS

DQ Bus

Data 1 Data 2

Data 0 Data 1 Data 2

Internal (at FF)

Data 0

IDELAY
Shift

DQS

External (at Pin)

After Phase 2

DQ Bus

DQS

DQ Bus

Data 1 Data 2

Data 0 Data 1

UG388_c5_03_080409

Data 2

Internal (at FF)

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 49
UG388 (v2.3) August 9, 2010

Calibration

to continuously monitor the tap delay values of the IDELAY elements used to delay the
DQS input paths. If a shift in tap delay value is detected, the tap delay count on the DQS
strobe input paths can be adjusted to keep them centered in the Read Data capture
window. The update to the IDELAY values is done during memory REFRESH operations
to avoid impacting normal data operations and controller efficiency.

http://www.xilinx.com

50 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 4: MCB Operation

Instructions
Table 4-1 provides detailed descriptions for all memory instructions implemented by the
MCB. To load an instruction into the Command FIFO of a User Interface port, the 3-bit code
for the instruction is clocked into the pX_cmd_instr[2:0] inputs on the rising edge of
pX_cmd_clk.
.

Table 4-1: Instructions Implemented by the MCB

Instruction Code [2:0] Description

Write 000

Memory Write. Writes the number of data words
specified by pX_cmd_bl[5:0] to the memory device
beginning at the byte address specified by
pX_cmd_addr[29:0]. Prior to issuing this instruction,
sufficient data must be loaded into the Write Data FIFO to
complete the transaction. Otherwise a data “underrun’
condition occurs. This instruction is valid for write only
and bidirectional ports.

Read 001

Memory Read. Reads the number of data words specified
by pX_cmd_bl[5:0] from the memory device beginning at
the byte address specified by pX_cmd_addr[29:0]. Prior
to issuing this instruction, the Read Data FIFO must have
enough space to complete the transaction. Otherwise a
data “overflow” condition occurs. This instruction is
valid for read only and bidirectional ports.

Write with Auto
Precharge

010

Memory Write with Auto Precharge. This instruction is
the same as the Write instruction but with auto precharge
appended after burst completion. Auto precharge closes
the DRAM bank where the transaction ended. This can
improve latency for applications with more random
access patterns that tend to jump between rows in the
same bank.

Note: The MCB looks ahead at subsequent transactions.
The auto precharge is skipped if the following transaction
is to the same row accessed in the current transaction.

Read with Auto
Precharge

011

Memory Read with Auto Precharge. This instruction is
the same as the Read instruction but with auto precharge
appended after burst completion. Auto precharge closes
the DRAM bank where the transaction ended. This can
improve latency for applications with more random
access patterns that tend to jump between rows in the
same bank.

Note: The MCB looks ahead at subsequent transactions.
The auto precharge is skipped if the following transaction
is to the same row accessed in the current transaction.

Refresh 1xx

Memory Refresh. Prompts the MCB to issue a refresh
command to the memory device. Resets the tREFI counter
allowing data to stream uninterrupted for a full refresh
cycle. This instruction should only be used for highly
customized dataflow structures. In general, the MCB
automatically issues refresh commands on its own, which
periodically results in increased latency for transactions.

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 51
UG388 (v2.3) August 9, 2010

Addressing

Addressing
From the User Interface perspective, the MCB provides a simple and sequential byte
addressing scheme into the physical DRAM. The fact that DRAMs store data in fixed
segments is abstracted by this scheme, allowing for a simple SRAM-like address interface.
For details on how the bank, row, and column address bits are mapped to the byte address,
refer to Byte Address to Memory Address Conversion, page 61.

Table 4-2 shows how the byte address presented to the User Interface must be aligned to
the port width. Depending on the number of bytes in the port width, a certain number of
the low address bits must be set to 0 to ensure that consecutive addresses fall on data word
boundaries. The write data mask inputs (pX_wr_mask) to the User Interface can be used to
offset the starting address byte location. For example, to begin writing at byte address
0x01 when using a 32-bit (4-byte) User Interface, the byte address presented to the
command port of the User Interface should be 0x00 to meet the requirements of Table 4-2,
but the least significant mask bit should be set to 1 such that only bytes at address 0x01
and higher are actually written.

It is also important to understand the addressing relationship when 32-bit and 64-bit ports
are used together in the User Interface (see Port Configurations, page 17). For 32-bit ports
the memory appears to be aligned on 4-byte boundaries, while for 64-bit ports the memory
appears to be aligned on 8-byte boundaries. Table 4-3 shows how two data words for a 32-
bit port map into the address space of a single data word for a 64-bit port.

Table 4-2: Address Requirements for Byte Address Alignment

Port Width Bytes per Data Word Address Requirement

32 bits 4 pX_cmd_addr[1:0] = 2'b00

64 bits 8 pX_cmd_addr[2:0] = 3'b000

128 bits 16 pX_cmd_addr[3:0] = 4'b0000

Table 4-3: 32-bit vs. 64-bit Port Address Relationship

32-bit Port 64-bit Port

Address Data Address Data

0x00 [31:0]
0x00

[31:0]

0x04 [31:0] [63:32]

0x08 [31:0]
0x08

[31:0]

0x0C [31:0] [63:32]

http://www.xilinx.com

52 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 4: MCB Operation

Command Path Timing
The command path of the User Interface uses a simple 4-deep FIFO structure to hold
pending commands. The instruction type, address, and burst length for the requested
transaction are all loaded into this Command FIFO. The full flag (pX_cmd_full) signal from
the command FIFO must be Low for a new command to be accepted into the FIFO when
pX_cmd_en is asserted during the rising edge of pX_cmd_clk. Otherwise, the command is
ignored. Figure 4-4 and Figure 4-5 demonstrate the protocol for loading a command into
the FIFO.

X-Ref Target - Figure 4-4

Figure 4-4: Command Path Timing (Write)

p0_cmd_clk

p0_cmd_en

p0_cmd_instr[2:0]

p0_cmd_bl[5:0]

p0_cmd_byte_addr[29:0]

p0_cmd_empty

p0_cmd_full

26,520ns

001 000 010

26,530ns 26,540ns 26,550ns 26,560ns 26,570ns 26,580ns 26,590ns

UG388_c5_05_051409

3F 10 00

00D6E3FC 005AD3FD

Write 17 user words from byte address 0x005AD3F0.

cmd_empty is deasserted
with write to first position
in FIFO registered on
configured edge when
cmd_en is asserted.

Write with Auto Precharge
1 user word to

byte address 0x00EE16FFC.

X-Ref Target - Figure 4-5

Figure 4-5: Command Path Timing (Read)

p0_cmd_clk

p0_cmd_en

p0_cmd_instr[2:0]

p0_cmd_bl[5:0]

p0_cmd_byte_addr[29:0]

p0_cmd_ba[2:0]

p0_cmd_ra[14:0]

p0_cmd_ca[11:0]

p0_cmd_empty

p0_cmd_full

27,050ns

001 100

27,060ns 27,070ns

UG388_c5_06_051409

0F 3F

00B2D3FC 1EADBEEC

0 2

2CB4 2B6F

3FC 2EC

Read 16 user words
from byte address

0x00B2D3FC.

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 53
UG388 (v2.3) August 9, 2010

Write Path Timing

Write Path Timing
The write path of the User Interface uses a simple 64-deep FIFO structure to hold data in
preparation for a Write transaction to memory. Similar to the Command FIFO, the full flag
(pX_wr_full) from the Write Data FIFO must be Low for new data to be accepted into the
FIFO when pX_wr_en is asserted during the rising edge of pX_wr_clk. Otherwise, the data
is ignored. If the full flag is Low, the pX_wr_data bus is captured into the FIFO on the rising
edge of pX_wr_clk. For every clock cycle that pX_wr_en is asserted, there must be valid
data on the pX_wr_data bus. Figure 4-6 demonstrates the protocol for loading data into the
Write Data FIFO.

The pX_wr_underrun signal indicates to the user that the memory controller has
attempted to send more data than was present in the write data FIFO and that the data
which was intended for the memory never reached the memory. This condition must be
avoided to guarantee reliable operation. To avoid an underrun condition, the user must
guarantee that all necessary data is available in the write data FIFO to accommodate a
transaction before committing that transaction to the command FIFO.

The count signal bus (pX_wr_count) provides a count of the number of entries in the FIFO.
Due to the asynchronicity of the FIFOs in the MCB, the count signal bus has a longer
latency than the empty and full flags. Therefore, this bus should only be used for
intermediate references and watermarks. The count will transition immediately with
respect to FIFO operations committed by the user. However, it take s longer for operations
committed by the controller to be apparent on the count signals than the full or empty
signals. Thus for the Write Data FIFO as the FIFO is filling, the count always reports at least
as many entries as are in the FIFO.

For example, if the user has written eight words into the FIFO, the count might report eight
even though somewhere during the process of writing to the FIFO, the controller could
have started pulling data out of the FIFO. Additionally, if the controller continues to
transmit the data to the memory, the count could still be showing entries in the FIFO even
though the FIFO is already empty. For the Write Data FIFO, it is perfectly suitable to use the
count signal bus as an almost full flag because the FIFO will never be full if the count is
reporting less than full. However, it is very important to use other methods to ensure
underrun conditions do not occur.

X-Ref Target - Figure 4-6

Figure 4-6: Write Path Timing

pX_wr_clk

pX_wr_en

pX_wr_mask[3:0]

pX_wr_data[31:0]

pX_wr_empty

pX_wr_full

pX_wr_underrun

pX_wr_count[6:0]

247,100,000ps

0

247,120,000ps 247.140,000ps 247,160,000ps 247,180,000ps 247,200,000ps

UG388_c5_07_051409

0000

00 0001 02 0203 04 0405 0506 07 0708

C0C0 C1C1 C2C2 C3C3 C4C4 C5C5 C6C6 C7C7C7C7

user_empty deasserted
with write to first position

in FIFO registered on
configured edge D0

written to FIFO.

WE deasserted with
last data. D7 written to FIFO.

Count should reflect the
total number of cycles

in which WE was asserted.

Latency from MemC side read
pointer to user interface count is flexible.

Count can jump in
undefined increments.

http://www.xilinx.com

54 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 4: MCB Operation

Read Path Timing
The read path of the User Interface uses a simple 64-deep FIFO structure to hold data
returning from a Read transaction. The empty flag (pX_rd_empty) from the Read Data
FIFO can be used as a data valid indicator. Whenever pX_rd_empty is deasserted, there is
valid data present on the pX_rd_data bus. To transfer data into the FPGA logic from the
Read Data FIFO, the pX_rd_en signal must be asserted on the rising edge of pX_rd_clk.
The pX_rd_data bus transitions on the rising edge of pX_rd_clk. The pX_rd_en signal can
remain asserted at all times and the pX_rd_empty signal can be used as a data valid
indicator, if desired. Figure 4-7 demonstrates the protocol for loading data out of the Read
Data FIFO.

The pX_rd_overflow signal indicates to the user that the memory has returned more data
than fits into the read data FIFO and that data was lost. This condition must be avoided to
guarantee reliable operation. To avoid an overflow condition, the user must guarantee that
there is enough space in the read data FIFO to accommodate a transaction before
committing that transaction to the command FIFO.

The count signal bus (pX_rd_count) provides a count of the number of entries in the FIFO.
Due to the asynchronicity of the FIFOs in the MCB, the count signal has longer latency than
the empty and full flags. Therefore, this bus should only be used for intermediate
references and watermarks. The count will transition immediately with respect to FIFO
operations committed by the user; however, it takes longer for operations committed by
the controller to be apparent on the count signals than the full or empty signals. Thus for
the Read Data FIFO as the FIFO is emptying, the count always reports less than or equal to
the number of entries that are actually in the FIFO.

For example, if the FIFO contains eight words, the count might report eight even though
somewhere during the process of reading from the FIFO, the controller could have started
pushing more data into the FIFO. Additionally, if the controller continues to push data into
the FIFO, the count could be showing fewer entries in the FIFO even though the FIFO is
already full or has even overflowed. For the Read Data FIFO, the count must be used with
caution as there will likely be more data in the FIFO than the count is reporting, especially
in flight transactions. Count can be used as an almost empty flag, but only to throttle read
datapath pipelines, not to throttle commands into the command FIFO.

X-Ref Target - Figure 4-7

Figure 4-7: Read Path Timing

pX_rd_clk

pX_rd_en

pX_rd_data[31:0]

pX_rd_empty

pX_rd_full

pX_rd_overflow

pX_rd_count[6:0]

247,320,000ps 247.340,000ps 247,360,000ps 247,380,000ps

UG388_c5_08_051409

00 02 04 05 07 0208 000607 0405 0103

XXXX> 03020100 131> 232> 333> 434> 535> 636> 737> XXXXX

user_empty deasserted with write of
first data in FIFO coincident

with configured edge.
Transistions due to controller

side clock domain allow for
additional latency.

user_empty asserted
with read of last

data in FIFO.

Count and data presented
on configured edge.

Count must go through
decode logic.

Count can jump in
undefined increments.

D0 presented transparently before the first RE.

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 55
UG388 (v2.3) August 9, 2010

Memory Transactions

Memory Transactions
Executing a Write or Read transaction requires proper sequencing between the command
and data paths. The following subsections demonstrate the protocols for issuing simple
Write and simple Read transactions.

Simple Write
To implement a Write transaction, the Write Data FIFO first must be loaded with sufficient
data to complete the request as dictated by the burst length value that is entered into the
Command FIFO. Otherwise, an underrun condition occurs when the transaction tries to
execute.

Figure 4-8 shows the most basic protocol for loading the Write Data FIFO. The data is
presented on the pX_wr_data bus, and pX_wr_en is activated such that the data is written
into the FIFO on the rising edge of pX_wr_clk. The pX_wr_empty and pX_wr_count
values reflect the fact that data has been loaded into the FIFO. In this example, a total of
three data words (32 bits each) are loaded into the FIFO.

Figure 4-9 shows the protocol for entering the Write request into the Command FIFO after
the data has been loaded into the Write Data FIFO. The pX_cmd_bl value (b'10 = burst
length 3) is consistent with the number of data words loaded. When the Write request is
loaded into the Command FIFO, the MCB automatically executes the transaction to the
memory device when the arbiter services this port.

X-Ref Target - Figure 4-8

Figure 4-8: Loading the Write Data FIFO

p0_wr_clk

p0_wr_en

p0_wr_count[6:0]

p0_wr_full

p0_wr_data[31:0]

p0_wr_empty

UG388_c5_09_051409

00 01 02 03

00000000 0C255418 AE82E2D5 62F5AEC5 FB324838

860ns 870ns 880ns 890ns

Write data into data path prior
to asserting write enable.

Subsequent writes update count immediately
if data not being pulled off the FIFO.

Data written into FIFO
on positive edge of
wr_clk where write

enable present.

From an empty state, empty flag is deasserted
one cycle after data is written into the FIFO due
to the synchronization register, and the count begins to update.

X-Ref Target - Figure 4-9

Figure 4-9: Entering the Write Request into Command FIFO

p0_cmd_clk

p0_cmd_en

p0_cmd_instr[2:0]

p0_cmd_bl[5:0]

p0_cmd_addr[29:0]

UG388_c5_10_051409

0

00

0000

0

10

1DE7

1

0F

12E1

830ns 850ns 860ns840ns 870ns 880ns

Write command with instruction,
burst length, and starting address.

Command and address
written into FIFO on positive
edge of cmd_clk where
cmd_en present.

http://www.xilinx.com

56 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 4: MCB Operation

Simple Read
To implement a Read transaction, the Read Data FIFO must have enough space to
complete the request as dictated by the burst length value that is entered into the
Command FIFO. Otherwise, an overflow condition occurs when the transaction tries to
execute.

Figure 4-10 shows the protocol for entering the Read request into the Command FIFO. The
pX_cmd_bl value specifies the number of data words requested from the memory. When
the Read request is loaded into the Command FIFO, the MCB automatically executes the
transaction when the arbiter services this port.

Figure 4-11 shows the requested data returning from the memory and being loaded into
the Read Data FIFO. The data is then presented on the pX_rd_data bus for access by the
FPGA logic. The pX_rd_empty and pX_rd_count values indicate that data has been loaded
into the FIFO.

X-Ref Target - Figure 4-10

Figure 4-10: Entering the Read Request into Command FIFO

p0_cmd_clk

p0_cmd_en

p0_cmd_instr[2:0]

p0_cmd_bl[5:0]

p0_cmd_addr[29:0]

p0_cmd_full

p0_cmd_empty

UG388_c5_11_051409

0 1

10

0706

3E

39D2

3452ns 3460ns 3464ns3456ns 3468ns 3472ns

Command and address written into FIFO on the positive
edge of cmd_clk where cmd_en present.

Read command with instruction,
burst length, and starting address.

X-Ref Target - Figure 4-11

Figure 4-11: Read Data Returning from the Memory Device

dqs[0]

dq[7:0]

 p0_rd_clk

p0_rd_en

p0_rd_count[6:0]

p0_rd_full

p0_rd_data[31:0]

p0_rd_empty

UG388_c5_12_051409

00

20352035 20355BE8 747F5BE8 1B693F36

01 00

ZZ
E8 5B 7F 74 36 3F 69 1B 10 C8 22 88 1C 84 47 8E 29

2170ns 2180ns 2190ns

Data read
from memory.

Empty deasserts and
count reflects data in FIFO.

First valid data
word available

on rd_data bus.

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 57
UG388 (v2.3) August 9, 2010

Read Latency

To transfer data into the FPGA logic from the Read Data FIFO, the pX_rd_en signal is
activated during the rising edge of pX_rd_clk as shown in Figure 4-12. The pX_rd_count
value updates accordingly.

Read Latency
Read latency is defined as the number of memory clock cycles from when the READ
command is written to the Command Path FIFO of the User Interface to when the
corresponding first data word is available in the Read Data Path FIFOs.

When benchmarking read latencies, it is important to specify the exact conditions under
which the measurement occurs. Read latency varies based on the conditions, such as:

• Number of commands already in the FIFO pipeline before the READ command is
issued

• Whether an ACTIVATE command needs to be issued to open the new bank/row

• Whether a PRECHARGE command needs to be issued to close a previously opened
bank

• Specific timing parameters for the memory, such as tRAS and tRCD in conjunction with
the bus clock frequency

• State of the arbiter in multi-port designs

• Memory device CAS latency

• Board-level and chip-level (for both memory and FPGA) propagation delays

Table 4-4 shows MCB read latencies for two different situations at two memory clock
frequencies. In the first scenario, the read occurs to a row that is already open in the
memory device, meaning no precharge or row activate commands are required prior to
accessing the requested data. In the second scenario, the read occurs to a new row address
location (bank/row conflict). This requires a precharge to close the previously open row,
followed by activation of the new row, which increases read latency. Both scenarios in
Table 4-4 assume a single port MCB User Interface with no other commands pending (i.e.,
the MCB is idle prior to the read request) and a memory device with a CAS latency equal
to 5.

X-Ref Target - Figure 4-12

Figure 4-12: Transferring Read Data into FPGA Logic

dqs[0]

dq[7:0]

p0_rd_clk

p0_rd_en

p0_rd_count[6:0]

p0_rd_full

p0_rd_data[31:0]

p0_rd_empty

UG388_c5_13_051409

8E

00

1B693F36 8822C810

01 02 03 04 03

29 3D A1 14 DF E4 9E EF AC 0A 3F D6 9B B8 E3 CD 4C

2190ns 2200ns 2210ns

Count updates to reflect
data written into the FIFO.

First valid data
word is available
on rd_data bus.

Rd_en pops data off the FIFO
and count decrements.

http://www.xilinx.com

58 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 4: MCB Operation

Self Refresh
The self-refresh interface is the mechanism by which the user can request that the memory
enter or exit its self-refresh mode. Self refresh is only supported in LPDDR, DDR2, and
DDR3 memories. Self refresh allows the memory to conserve power while retaining data
when the memory does not need to be actively transmitting data.

The self-refresh interface uses a simple protocol to enter and exit self-refresh mode. A
single mode status pin (selfrefresh_mode) indicates whether or not the memory is
currently in self-refresh mode. The asynchronous selfresh_enter signal is sampled on the
MCB core clock, which is often running at speeds much faster than the User Interface
clocks.

To enter self-refresh mode, the selfrefresh_enter signal is asserted until selfrefresh_mode
goes High (see Figure 4-13). The selfrefresh_enter signal must remain High to stay in
self-refresh mode. To exit the mode, the selfrefresh_enter signal is deactivated (see
Figure 4-14). The selfrefresh_mode signal then goes Low indicating that the self-refresh
mode has been exited.

The selfresh_enter signal must be maintained in a steady state condition because any glitch
on the line can be interpreted as a request. In general, these signals should be registered by
the user before going to the MCB to guarantee that these signals only switch when desired.

The Spartan-6 device can be put into suspend mode while the external memory is in
self-refresh mode to further reduce system power consumption. However, the Spartan-6
device cannot be reconfigured while the memory device is in self-refresh mode.
Reconfiguring causes loss of state in the MCB, preventing proper exiting from the
self-refresh mode.

Table 4-4: MCB Read Latency

Read Latency Scenario

Read Latency (Memory Clock Cycles)

MEMCLK = 333 MHz
(667 Mb/s)

MEMCLK = 400 MHz
(800 Mb/s)

Read from Open Row

Outbound Command Path 12.5 12.5

Memory CAS Latency (CL) 5 5

Inbound Read Datapath 4.5 4.5

 Total Latency in Cycles
(Time in ns)

22 Cycles
(66 ns)

22 Cycles
(55 ns)

Read from New Row

Outbound Command Path 12.5 12.5

Precharge/Activate 10 12

Memory CAS Latency (CL) 5 5

Inbound Read Datapath 4.5 4.5

Total Latency in Cycles
(Time in ns)

32 Cycles
(96 ns)

34 Cycles
(85 ns)

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 59
UG388 (v2.3) August 9, 2010

Suspend

Suspend
This section describes two recommended methods for using the Suspend Mode
capabilities of Spartan-6 devices with designs containing an MCB-based interface.

Suspend Mode without DRAM Data Retention
In cases where it is not important to retain the data stored in the DRAM device, the
Suspend pin can simply be brought to an active-High state to enter the suspend mode.
Prior to bringing the Suspend pin High, the MCB should be placed in reset by bringing
async_rst to an active-High state. While in suspend mode, the MCB is held in reset.

When the Suspend pin is brought Low to exit suspend mode, the MCB is held in reset until
the PLL_LOCK signal goes active, indicating a stable clock source to the MCB. The MCB
then exits reset and initializes the DRAM using the same startup sequence that occurs
during initial power-up or system reset of the MCB. All DRAM data should be considered
invalid when exiting suspend mode in this scenario.

Suspend Mode with DRAM Data Retention
In cases where the DRAM data must be retained, the SUSPEND_SYNC primitive must be
used in combination with the Self Refresh interface of the MCB to implement suspend
mode properly. The SUSPEND_SYNC primitive is used to ensure that the MCB puts the
DRAM device into self-refresh mode (see the Self Refresh section) to retain its state prior to
putting the FPGA into suspend mode.

Figure 4-15 shows how the SUSPEND_SYNC primitive is connected to the Suspend pin
logic and the MCB interface to implement suspend mode with DRAM data retention. The
timing diagram in Figure 4-16 illustrates the signal relationships required to successfully
take the FPGA into and out of suspend mode in this scenario.

X-Ref Target - Figure 4-13

Figure 4-13: Entering Self-Refresh Mode

sysclk90

usrclk

selfrefresh_enter

selfrefresh_mode

UG388_c5_14_050709

3140ns 3150ns 3160ns 3170ns 3180ns 3190ns 3200ns 3210ns

X-Ref Target - Figure 4-14

Figure 4-14: Exiting Self-Refresh Mode

sysclk90

usrclk

selfrefresh_enter

selfrefresh_mode

UG388_c5_15_050709

3300ns 3400ns 3500ns 3600ns 3700ns 3800ns

http://www.xilinx.com

60 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 4: MCB Operation

In response to the active-High Suspend pin, the SUSPEND_SYNC primitive sends a
suspend request (SREQ) signal to the MCB to indicate the desire to enter suspend mode.
The SREQ signal is connected directly to the selfrefresh_enter input of the top-level MIG
(or EDK) wrapper, from which it is routed to the soft calibration module. The soft
calibration module completes any current operations before forwarding the self-refresh
request to the MCB and from there to the memory device.

Once the MCB has successfully placed the DRAM device in self-refresh mode, the
selfrefresh_mode output goes High. This signal is directly connected to the suspend
acknowledge (SACK) input of the SUSPEND_SYNC primitive, indicating that the FPGA
can now be placed in suspend mode. The PLL_lock signal is lost when the Suspend occurs.

When the Suspend pin goes Low to exit suspend mode, SREQ and therefore the
selfrefresh_enter signals go inactive, and the FPGA emerges from the Suspend state. The
PLL_lock signal is initially Low as the PLL tries to lock onto the incoming clock again.
However, because the selfrefresh_mode signal is active, this Low PLL_lock condition does
not cause a system reset of the MCB as it normally would. When the PLL achieves lock, the
soft calibration module forwards the request to leave the self-refresh mode to the MCB and
from there to the memory device.

When the DRAM device has successfully exited the self-refresh mode, the
selfrefresh_mode signal returns to the Low state, and normal MCB operation can resume
with no loss of DRAM data.

X-Ref Target - Figure 4-15

Figure 4-15: SUSPEND_SYNC Connections

UG388_c4_15_021610

SUSPEND_SYNC

Suspend Pin
LogicSuspend Pin

MCB
(MIG Wrapper)

selfrefresh_enterSREQ

SACK selfrefresh_mode

X-Ref Target - Figure 4-16

Figure 4-16: Suspend Mode Timing Diagram

UG388_c4_16_021910

selfrefresh_mode

SREQ

SACK

SUSPEND pin

PLL_lock

selfrefresh_enter

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 61
UG388 (v2.3) August 9, 2010

Byte Address to Memory Address Conversion

Additional Suspend Mode Requirements
While the Spartan-6 device is in suspend mode, some critical signals driving the DRAM
device must be maintained in a known state. When using suspend mode with memory
devices that support the self-refresh mode, the CKE output of the Spartan-6 device should
have a constraint added to retain the last state of the pin during the Suspend state. A
statement like the following should be added to the user constraints file (UCF):

NET "mcbx_dram_cke" SUSPEND="drive_last_value";

This ensures that the DRAM device executes the self-refresh mode properly. In addition,
for DDR3, the reset signal to the DRAM should have a similar constraint added to the UCF
file as follows:

NET "mcbx_dram_reset_n" SUSPEND="drive_last_value";

This prevents an unintentional reset of the DRAM device during suspend mode.

Byte Address to Memory Address Conversion
From the User Interface perspective, the MCB provides a simple and sequential byte
addressing scheme into the physical DRAM. The fact that DRAMs store data in fixed
segments is abstracted by this scheme, allowing for a simple SRAM-like address interface.
The MCB automatically converts the User Interface byte address into the necessary row,
bank, and column address signals required for a particular memory device configuration.
To complete the abstraction of the physical memory addressing details, the MCB manages
automatic row and bank crossing transparent to the User Interface.

The memory standard, bus width, and density all affect how the User Interface byte
address bits map to the respective row, bank, and column address bits. Memory device
selection in the MIG tool results in the passing of the necessary parameters to the MCB so
that it can create the proper address bit assignments. Table 4-5, page 63 shows how the
assignments are made based on a given memory device configuration. These mappings are
based on JEDEC standard addressing schemes.

As shown in Table 4-5, the memory width (x4, x8, or x16) affects the mapping of the byte
address to the physical address. For x4 devices, the column address LSB is always set to 0
on the external address bus to create byte-aligned addressing into the memory device
(User Interface bit 0 maps to column address bit 1). Because x8 devices use native byte
addressing, the MCB uses a direct mapping of byte address to physical address bit (User
Interface bit 0 maps directly to column address bit 0). For x16 devices, the mapping is
shifted to create address alignment on a two-byte boundary (User Interface bit 1 maps to
column address bit 0).

The MCB supports two general schemes for mapping the User Interface byte address to the
memory interface physical address: ROW_BANK_COLUMN and
BANK_ROW_COLUMN. The Port Configuration page in the MIG tool allows selection of
the scheme most suited for the particular application (see the “Creating an MCB Design”
section in UG416, Spartan-6 FPGA Memory Interface Solutions User Guide). Table 4-5 shows
the mapping only for ROW_BANK_COLUMN addressing. For BANK_ROW_COLUMN
addressing, the position of the Row and Bank address groups are switched such that the
Bank address bits are in the MSB position with respect to the User Interface byte address.
Column address bit mappings remain unchanged.

The ROW_BANK_COLUMN addressing scheme means that for a transaction occurring
over a sequential address space (for example, a long data burst), the MCB automatically
opens up the same row in the next bank of the DRAM device to continue the transaction
when the end of an existing row is reached. This reduces the overhead caused by closing

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf

62 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 4: MCB Operation

down the current row (Precharge command) and opening another row in the same bank
(Activate command) to continue the transaction. The ROW_BANK_COLUMN addressing
scheme is well suited to applications that require bursting of large data packets to
sequential address locations where efficiency can be gained by striping the data across
multiple banks.

In contrast, BANK_ROW_COLUMN addressing means that crossing a row boundary
results in closing that row and opening another one within the same bank. The Bank
address bits reside in the MSB position of the User Interface byte address and can be used
to switch between major address spaces that reside in different banks. For example, a
microprocessor or microcontroller based application that tends to have shorter, more
random transactions to one block of memory for a period of time and then jump to another
block (that is, bank) might prefer this address mapping scheme.

The specifics of the application determine whether ROW_BANK_COLUMN or
BANK_ROW_COLUMN should be chosen as the address scheme.

Note: When referring to Table 4-5, the user must ensure that the requirements listed in Table 4-2,
page 51 are followed to preserve proper data word boundaries.

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 63
UG388 (v2.3) August 9, 2010

Byte Address to Memory Address Conversion

Table 4-5: Memory Device Mapping
Byte Address 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 V

Type Width Depth

DDR

x16

128 Mb
256 Mb
512 Mb

1 Gb

x8

128 Mb
256 Mb
512 Mb

1 Gb

x4

128 Mb
256 Mb
512 Mb

1 Gb

DDR2

x16

256 Mb
512 Mb

1 Gb
2 Gb
4 Gb

x8

256 Mb
512 Mb

1 Gb
2 Gb

x4

256 Mb
512 Mb

1 Gb
2 Gb

DDR3

x16

512 Mb
1 Gb
2 Gb
4 Gb

x8

512 Mb
1 Gb
2 Gb

x4

512 Mb
1 Gb
2 Gb

LPDDR x16

128 Mb
256 Mb
512 Mb

1 Gb

 Column Address Bits:

 Bank Address Bits: CA[0] tied Low on 4-bit memories

 Row Address Bits:

http://www.xilinx.com

64 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Chapter 4: MCB Operation

Transaction Ordering and Coherency
In the MCB architecture, transactions are executed to memory in the order that the
transactions are acknowledged with respect to a single port. Consequently, on a single
port, transactions are completed in the same order as requested.

Across multiple ports of the MCB, there is no guarantee that the transactions issued by
different ports will complete in the request order. The arbitration algorithm can be
modified so that a given port is favored over another port. This can be used as a
mechanism to influence transaction ordering but might not guarantee a specific order.

The MCB allows write transactions to be buffered inside itself. Because of the buffering,
there is an undefined time between when a write transaction is accepted into the
Command FIFO and when the write completes to memory. Because transaction ordering is
not guaranteed across ports, a port doing a read from an address location being written to
by another port might read the new or the old memory value.

In some applications, it is important to know that a write has completed to memory before
issuing a read of that location. There are three methods that can ensure coherency:

1. Monitor the Command FIFO empty flag:

• Assuming that only one command is queued for the given port, the user can
monitor the Command FIFO empty flag. This flag goes High when the MCB has
started to issue the write command. When the command starts, it is guaranteed to
finish provided the data is available in the Write Data FIFO.

• The design can wait for the Command FIFO empty flag to go High before
signaling that a read can be performed.

2. The design can take advantage of the fact that transactions complete in order on a
given port:

• After a write to a sensitive part of memory, the device can issue a dummy read
and wait for the dummy read to complete and return data.

• The completion of the dummy read ensures that the previous write has completed
to memory.

3. The arbitration algorithm can be adjusted:

• If the port performing the writes can always be set to have higher priority than
the ports doing the reads, this ensures that the write completes before the read
across the two ports. Care should be taken with this method if there is a
possibility that the ports can have “bubble” cycles between the write and the read
request.

Note: Using any of these methods to ensure coherency could result in reduced system
performance; these methods should be employed only when necessary.

http://www.xilinx.com

Spartan-6 FPGA Memory Controller www.xilinx.com 65
UG388 (v2.3) August 9, 2010

Appendix A

References

Memory Standards
These links provide more details about each of the memory standards implemented by the
MCB:

• JEDEC DDR3 Specification

http://www.jedec.org/sites/default/files/docs/JESD79-3D.pdf

• JEDEC DDR2 Specification

http://www.jedec.org/sites/default/files/docs/JESD79-2F.pdf

• JEDEC DDR Specification

http://www.jedec.org/sites/default/files/docs/JESD79F.pdf

• JEDEC LPDDR Specification

http://www.jedec.org/sites/default/files/docs/JESD209A.pdf

PCB Layout and Signal Integrity
These references provide additional details regarding PCB layout and signal integrity
analysis for DDR memories. Xilinx does not guarantee the accuracy or completeness of any
material referenced here.

• Hardware Tips for Point-to-Point System Design: Termination, Layout, and Routing

http://download.micron.com/pdf/technotes/DDR/tn4614.pdf

• Interfacing the RC32434/5 with DDR SDRAM Memory

http://www.idt.com/products/getDoc.cfm?docID=571565

• DDR-SDRAM Layout Considerations for MCF547x/8x Processors

http://www.freescale.com/files/32bit/doc/app_note/AN2826.pdf

• Hardware and Layout Design Considerations for DDR2 SDRAM Memory Interfaces

http://www.freescale.com/files/32bit/doc/app_note/AN2910.pdf

• DDR System Design Considerations

http://download.micron.com/pdf/presentations/dram/plat7justin.pdf

• DDR2 Package Sizes and Layout Requirements

http://download.micron.com/pdf/technotes/ddr2/TN4708.pdf

• DDR2 (Point-to-Point) Package Sizes and Layout Basics

http://download.micron.com/pdf/technotes/ddr2/TN4720.pdf

http://www.xilinx.com
http://download.micron.com/pdf/technotes/DDR/tn4614.pdf
http://www.idt.com/products/getDoc.cfm?docID=571565
http://www.freescale.com/files/32bit/doc/app_note/AN2826.pdf
http://www.freescale.com/files/32bit/doc/app_note/AN2910.pdf
http://download.micron.com/pdf/technotes/ddr2/TN4720.pdf
http://download.micron.com/pdf/technotes/ddr2/TN4708.pdf
http://download.micron.com/pdf/presentations/dram/plat7justin.pdf
http://www.jedec.org/sites/default/files/docs/JESD79-3D.pdf
http://www.jedec.org/sites/default/files/docs/JESD79-2F.pdf
http://www.jedec.org/sites/default/files/docs/JESD79F.pdf
http://www.jedec.org/sites/default/files/docs/JESD209A.pdf

66 www.xilinx.com Spartan-6 FPGA Memory Controller
UG388 (v2.3) August 9, 2010

Appendix A: References

• Understanding TI’s PCB Routing Rule-Based DDR Timing Specification

http://focus.ti.com.cn/cn/lit/an/spraav0a/spraav0a.pdf

• Implementing DDR2 PCB Layout on the TMS320C6454/5

http://focus.ti.com/lit/an/spraaa7e/spraaa7e.pdf

http://www.xilinx.com
http://focus.ti.com/lit/an/spraaa7e/spraaa7e.pdf
http://focus.ti.com.cn/cn/lit/an/spraav0a/spraav0a.pdf

	Spartan-6 FPGA Memory Controller
	Revision History
	Table of Contents
	About This Guide
	Guide Contents
	Additional Documentation
	Additional Support Resources

	Memory Controller Block Overview
	Scope
	Introduction
	Features and Benefits
	Block Diagram
	Performance
	Device Family Support
	Supported Memory Configurations
	Software and Tool Support

	MCB Functional Description
	Architecture Overview
	Port Configurations
	Selecting a Port Configuration

	Arbitration
	Programmability
	Interface Details
	User (Fabric Side) Interface
	Memory Device Interface

	Designing with the MCB
	Design Flow
	CORE Generator Tool

	Supported Memory Devices
	Simulation
	Resource Utilization
	Clocking
	Modifying the Clock Setup

	Migration and Banking
	PCB Layout Considerations
	General Guidelines
	Data, Data Mask, and Data Strobe Guidelines
	Address, Control, and Clock Guidelines
	Additional Board Design Requirements
	Simultaneous Switching Output Considerations

	MCB Operation
	Startup Sequence
	Calibration
	Phase 1: Input Termination
	Phase 2: DQS Centering
	Phase 3: Continuous DQS Tuning

	Instructions
	Addressing
	Command Path Timing
	Write Path Timing
	Read Path Timing
	Memory Transactions
	Simple Write
	Simple Read

	Read Latency
	Self Refresh
	Suspend
	Suspend Mode without DRAM Data Retention
	Suspend Mode with DRAM Data Retention
	Additional Suspend Mode Requirements

	Byte Address to Memory Address Conversion
	Transaction Ordering and Coherency

	References
	Memory Standards
	PCB Layout and Signal Integrity

